Абсолютная и относительная погрешность — методы и алгоритмы вычислений

Что такое точность?

Точность измерений характеризует близость результата измерения к фактическому значению измеряемой величины. Строго говоря, ни одна физическая величина не может быть измерена с абсолютной точностью — так, чтобы данные измерительного прибора отображали истинное значение.

Мир и его явления, на самом деле, практически всегда имеют отношение к иррациональным числам, таким, как, к примеру, результат деления десяти на три: наберите данную операцию на калькуляторе и посмотрите на то, как неэстетично в реальности выглядят данные — с кучей знаков после запятой, за которыми не угнаться.

Однако иррациональность чисел не удивляет, да и слишком абстрактна, дабы уловить суть. Что есть деление десяти на три? Тогда, для конкретности, стоит покуситься на святое — на время. Казалось бы, что может быть точнее времени, показываемого самыми точными на свете часами — атомными часами?

И тем не менее, даже если вы зайдете на онлайн-ресурс, официально регистрирующий международное атомное время с точностью до миллисекунд, действительного точного измерения времени там вы не найдете.

Всегда есть условности: задержка передачи данных между сетевыми элементами; ваш мозг, регистрирующий и обрабатывающий информацию, поступающую через органы чувств и т. д. Все это отдаляет нас, хоть и несущественно, от фактического значения величины.

Именно поэтому в физике одним из важнейших понятий является понятие погрешности.

Как посчитать разницу между процентами в MS Excel

Нужное нам соотношение можно высчитать и с помощью редактора MS Excel. Обычно она высчитывается по уже описанной нами формуле:

Где:

  • А2 – старый показатель
  • B2 – новый показатель

Предположим, нам необходимо высчитать процентную разницу в результатах компании, которая в 2019 году продала товаров на 400 тысяч рублей, а во втором – на 730 тысяч рублей.

В Экселе это будет выглядеть следующим образом:

  1. Внесите в ячейку А2 старый параметр, а в B2 – новый;

  2. Установите курсор на ячейку С2 и выберите для неё процентный формат, кликнув на соответствующую кнопку во вкладке «Главная»;

  3. Далее в ячейке С2 впишите формулу  =(B2-A2)/A2   и нажмите на ввод;

  4. В ячейке С2 автоматически отобразится нужный результат;

  5. При необходимости дополните значения ячеек А и B новыми параметрами ниже, и расширьте курсор ячейки C2 и на соответствующие значения ячеек С для отображения результата.

    Протяните столбик для вычисления результата по всем параметрам

Вычисление погрешности

Но что делать, если бы мы захотели учесть погрешность? Как ее вычислить и обозначить математически?

На самом деле, точно определить погрешность не так просто. Для этого необходимо владение методами математической статистики, для чего требуется уже знание высшей математики

Плюс немаловажно определение комплексных параметров вроде класса точности измерительного прибора

Поэтому для простоты измерений с погрешностью считается, что обычно она равна половине цены деления прибора. В нашем эксперименте при цене деления линейки в сантиметр погрешность составила 0.5 см. При цене деления в миллиметр — 0.05 см.

Так, полученные замеры, где $l$ — длина карандаша, можно было бы записать в следующем виде:

$l$ = 12 ± 0.5 cм — в случае, когда цена деления составляла сантиметр;

$l$ =  12.2 ± 0.05 см — в случае, когда цена деления составляла миллиметр.

Эксперимент с линейкой

Обнаружить явление погрешности можно самостоятельно вне строгой лабораторной обстановки: достаточно провести простой эксперимент измерения длины с обычной школьной линейкой. В качестве примера, возьмем карандаш и выполним с ним замеры.

Рисунок 2. Замер линейкой с ценой деления 1 см.

Во-первых, необходимо зафиксировать цену деления измерительного прибора. Цена деления определяется разностью двух ближайших отметок. В нашем случае она равна 1 см.

Примечание. На разметке измерительного прибора всегда указываются единицы измерения. К примеру, на стандартной линейке можно увидеть пометку «см», сантиметры.

Довольно часто используемые для измерений приборы не работают с основными единицами СИ — единицы величин либо являются производными, как сантиметр, либо, как миллиметр ртутного столба, являются внесистемными.

Когда вас просят привести ответ в СИ, не забывайте о переводе значений, если измерительный прибор работает с внесистемными или производными единицами. В случае с сантиметровой линейкой, при подобном требовании, обязательно выражение результата в метрах и т. п.  

Далее совмещаем конец карандаша с нулевой отметкой. Видим, что второй конец располагается между отметками 12 и 13.

Какой из этих результатов следует принять за длину нашего карандаша?

Очевидно, что тот, который будет ближе к истинному значению — 12 см. Если бы мы провели аналогичный опыт, использовав более точную линейку с ценой деления в миллиметр, мы получили бы значение 12.2 см.

Рисунок 3. Замер линейкой с ценой деления 1 мм.

А какой из этих результатов лучше будет засчитать теперь? Какой правильный?

Оба результата фактически являются верными, их разница заключается лишь в том, что получены они были с разной точностью измерения: длина карандаша во втором варианте была дана с точностью до миллиметра, в первом — до сантиметра. Можно было бы воспользоваться микро́метром, еще более точным измерительными прибором, и получить результат с точностью до микроме́тра. Однако в случае с карандашом точности до миллиметра будет достаточно.

Наш ответ: 12.2 см.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер по всему
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: