Дж — джоуль. конвертер величин

Классификация пневматики по энергии

Любое изделие поддается классификации и определению. Пневматическое оружие в том числе. По принципу устройства их делят на:

  • пружинно-поршневые. Кинетическую энергию пуле придает механизм, состоящий из пружины и поршня. Головка сжимает воздух, который впоследствии выталкивает снаряд из ствола. Перезаряжение производится за счет мускульной силы стрелка;
  • электропневматические. Принцип действия совпадает с вышеописанным, но сжатие пружины происходит за счет энергии аккумуляторов;
  • газобаллонные. Газ, находящийся под давлением в баллоне, во время стрельбы выталкивает шарики из ствола. Такие ружья часто используют в пейнтболе;
  • предварительно накачиваемые. Сжатый воздух стрелок накачивает самостоятельно с помощью мускульной силы или компрессорного оборудования.

Во всех вышеперечисленных конструкциях начальную скорость пуле придает сжатый воздух. Поэтому оружие часто классифицируют по дульной энергии. Такое разделение необходимо с юридической составляющей. По мощности выстрела можно определить, на сколько оно опасно для человека и, соответственно, требует получение лицензии.

До 3 Дж, без указания калибра

Такие ружья и пистолеты больше используют для развлечения и отработки меткости стрельбы. Они не обладают убойной силой и не способны нанести существенного вреда человеку. Для его покупки не требуется получение разрешения, поэтому оно находится в свободной продаже.

До 3 Дж, кал. 6-8 мм

Эта категория оружия относится к группе мягкой пневматики. На жаргонном языке ее еще называют «Аэрсофт». Изготавливается с полной имитацией боевых видов стрелкового вооружения. В качестве боеприпасов выступают пластиковые шарики диаметром от 6 до 8 миллиметров. Заряжающий механизм приводится в действие с помощью электропривода, работающего от съемных аккумуляторов. Широкое применение оружие нашло в игре «Страйкбол».

3,5 Дж, кал. 10 мм

Еще одна категория безопасного оружия, используемого для развлечения. Также присутствует внешняя имитация боевых видов. Шарики из ствола выталкивает сжатый газ, обычно углекислый, который предварительно закачивают в специальные баллоны. Используют оружие для игр в «Пейнтбол».

до 7,5 Дж, кал. 4,5 мм

Спортивно-развлекательное оружие для обучения навыкам стрельбы и игры в «Хардбол». К этой категории относятся практически все виды разрешенного пневматического оружия. Они не требуют получения специального разрешения в МВД.

14 Дж, кал. 17,3 мм

Оружие, обладающее дульной энергией 14 Дж, относится к категории спортивного снаряжения. Используется для тренировки и участия в соревнованиях.

До 25 Дж, любого калибра

Сюда относятся спортивные и охотничьи ружья, пистолеты. Убойная сила такого оружия достаточно высока, поэтому его приравнивают к боевому огнестрельному. Требует получения разрешения и лицензии.

Свыше 25 Дж

Категория спортивной, охотничьей и боевой пневматики. В военном применении используется для отработки навыков стрельбы. В нашей стране оно не сертифицировано, поскольку в законодательстве не предусмотрены ружья с кинетикой более 25 Дж. Поэтому при покупке возможны проблемы с регистрацией.

Практические примеры

Один джоуль представляет (приблизительно):

  • Энергия, необходимая для ускорения Масса кг при1  м / с 2 на расстоянии1  мес .
  • Кинетическая энергия А Масса кг, путешествующая на1  м / с .
  • Энергия, необходимая для поднятия помидора среднего размера на 1 метр (3 фута 3 дюйма), предположим, что томат имеет массу 101,97 грамма (3,597 унции).
  • Тепла , необходимое для повышения температуры 0,239 г воды от 0 ° С до 1 ° С, или от 32 ° F до 33,8 ° F.
  • Типичная энергия, выделяемая в виде тепла человеком в состоянии покоя каждые 1/60 с (17  мс ).
  • Кинетическая энергия АЧеловек весом 50 кг движется очень медленно (0,2 м / с или 0,72 км / ч).
  • Кинетическая энергия Теннисный мяч весом 56 г движется со скоростью 6 м / с (22 км / ч).
  • Количество электроэнергии, необходимое для работы Устройство мощностьюВт для1  с .
  • Пищевая энергия (ккал) содержится чуть более чем в половине кристаллов сахара (0,102  мг / кристалл).

История.

Метрическая система выросла из постановлений, принятых Национальным собранием Франции в 1791 и 1795 по определению метра как одной десятимиллионной доли участка земного меридиана от Северного полюса до экватора. Декретом, изданным 4 июля 1837, метрическая система была объявлена обязательной к применению во всех коммерческих сделках во Франции. Она постепенно вытеснила местные и национальные системы в других странах Европы и была законодательно признана как допустимая в Великобритании и США. Соглашением, подписанным 20 мая 1875 семнадцатью странами, была создана международная организация, призванная сохранять и совершенствовать метрическую систему.

Ясно, что, определяя метр как десятимиллионную долю четверти земного меридиана, создатели метрической системы стремились добиться инвариантности и точной воспроизводимости системы. За единицу массы они взяли грамм, определив его как массу одной миллионной кубического метра воды при ее максимальной плотности. Поскольку было бы не очень удобно проводить геодезические измерения четверти земного меридиана при каждой продаже метра ткани или уравновешивать корзинку картофеля на рынке соответствующим количеством воды, были созданы металлические эталоны, с предельной точностью воспроизводящие указанные идеальные определения.

Вскоре выяснилось, что металлические эталоны длины можно сравнивать друг с другом, внося гораздо меньшую погрешность, чем при сравнении любого такого эталона с четвертью земного меридиана. Кроме того, стало ясно, что и точность сравнения металлических эталонов массы друг с другом гораздо выше точности сравнения любого подобного эталона с массой соответствующего объема воды.

В связи с этим Международная комиссия по метру в 1872 постановила принять за эталон длины «архивный» метр, хранящийся в Париже, «такой, каков он есть». Точно так же члены Комиссии приняли за эталон массы архивный платино-иридиевый килограмм, «учитывая, что простое соотношение, установленное создателями метрической системы, между единицей веса и единицей объема представляется существующим килограммом с точностью, достаточной для обычных применений в промышленности и торговле, а точные науки нуждаются не в простом численном соотношении подобного рода, а в предельно совершенном определении этого соотношения». В 1875 многие страны мира подписали соглашение о метре, и этим соглашением была установлена процедура координации метрологических эталонов для мирового научного сообщества через Международное бюро мер и весов и Генеральную конференцию по мерам и весам.

Новая международная организация незамедлительно занялась разработкой международных эталонов длины и массы и передачей их копий всем странам-участницам.

«Механическая работа. Механическая мощность»

Код ОГЭ 1.16. Механическая работа. Формула для вычисления работы силы. Механическая мощность.

Работа силы – физическая величина, характеризующая результат действия силы.

Механическая работа А постоянной силы равна произведению модуля вектора силы на модуль вектора перемещения и на косинус угла а между вектором силы и вектором перемещения: А = Fs cos а.

Единица измерения работы в СИ – джоуль: = Дж = Н • м. Механическая работа равна 1 Дж, если под действием силы в 1 Н тело перемещается на 1 м в направлении действия этой силы.

Анализ формулы для расчёта работы показывает, что механическая работа не совершается если:

  • сила действует, а тело не перемещается;
  • тело перемещается, а сила равна нулю;
  • угол между векторами силы и перемещения равен 90° (cos a = 0).

Внимание! При движении тела по окружности под действием постоянной силы, направленной к центру окружности, работа равна нулю, так как в любой момент времени вектор силы перпендикулярен вектору мгновенной скорости. Работа – скалярная величина, она может быть как положительной, так и отрицательной. Работа – скалярная величина, она может быть как положительной, так и отрицательной

Работа – скалярная величина, она может быть как положительной, так и отрицательной.

  1. Если угол между векторами силы и перемещения 0° ≤ а < 90°, то работа положительна.
  2. Если угол между векторами силы и перемещения 90° < a ≤ 180°, то работа отрицательна.

Работа обладает свойством аддитивности: если на тело действует несколько сил, то полная работа (работа всех сил) равна алгебраической сумме работ, совершаемых отдельными силами, что соответствует работе равнодействующей силы.

Примеры расчёта работы отдельных сил:

Работа силы тяжести: не зависит от формы траектории и определяется только начальным и конечным положением тела: A = mg(h1 – h2)

По замкнутой траектории работа силы тяжести равна нулю.Внимание! При движении вниз работа силы тяжести положительна, при движении вверх работа силы тяжести отрицательна

Работа силы трения скольжения: всегда отрицательна и зависит от формы траектории. Если сила трения не изменяется по модулю, то её работа А = –Fтр l , где l – путь, пройденный телом (длина траектории). Очевидно, что чем больший путь проходит тело, тем большую по модулю работу совершает сила трения. Работа силы трения по замкнутой траектории не равна нулю!

Мощность N – физическая величина, характеризующая быстроту (скорость) совершения работы и равная отношению работы к промежутку времени, за который эта работа совершена: .

Мощность показывает, какая работа совершается за 1 с. Единица измерения мощности в СИ – ватт: = Дж/с = Вт. Мощность равна одному ватту, если за 1 с совершается работа 1 Дж.

Может пригодиться! 1 л. с

(лошадиная сила) ~ 735 Вт.Внимание! Для случая равномерного движения (равнодействующая сила равна нулю) при расчете мощности отдельных сил, действующих на тело, получим

Для равноускоренного движения (F = const) где ʋср– средняя скорость движения за расчётный промежуток времени.

Конспект урока «Механическая работа. Механическая мощность».

Следующая тема: «Кинетическая и потенциальная энергия» (код ОГЭ 1.17)

Мощность бытовых электроприборов

На бытовых электроприборах обычно указана мощность. Некоторые светильники ограничивают мощность лампочек, которые в них можно использовать, например не более 60 ватт. Это сделано потому, что лампы более высокой мощности выделяют много тепла и светильник с патроном могут быть повреждены. Да и сама лампа при высокой температуре в светильнике прослужит недолго. В основном это проблема с лампами накаливания. Светодиодные, люминесцентные и другие лампы обычно работают с меньшей мощностью при одинаковой яркости и, если они используются в светильниках, предназначенных для ламп накаливания, проблем с мощностью не возникает.

Чем больше мощность электроприбора, тем выше потребление энергии, и стоимости использования прибора. Поэтому производители постоянно улучшают электроприборы и лампы. Световой поток ламп, измеряемый в люменах, зависит от мощности, но также и от вида ламп. Чем больше световой поток лампы, тем ярче выглядит ее свет. Для людей важна именно высокая яркость, а не потребляемая ламой мощность, поэтому в последнее время альтернативы лампам накаливания пользуются все большей популярностью. Ниже приведены примеры видов ламп, их мощности и создаваемый ими световой поток.

Единицы измерения

Основной единицей, которой принято выражать осуществляемую электротоком трансформацию, является джоуль. Данное наименование единица получила по фамилии английского физика, обосновавшего опытным путем закон сохранения энергии. В сокращенном виде джоуль пишется как «Дж». Выразить величину через другие единицы измерения можно, используя основную формулу: 1 Дж = 1 А*1В*1 с (ампер, вольт и секунда, соответственно).

Важно! Приборы учета затраченной электроэнергии используют иную единицу измерения – киловатт-час (указывается как кВт*ч). Связано это с тем, что джоуль является весьма некрупной единицей, а один киловатт-час равен 3600000 джоулей. Поскольку функционирование осветительных приборов и бытовой техники в жилой квартире или доме продолжается сотни часов ежемесячно, и в процессе этого реализуется значительная работа тока, киловатт-час является куда более адекватной данным условиям измерительной единицей

Поскольку функционирование осветительных приборов и бытовой техники в жилой квартире или доме продолжается сотни часов ежемесячно, и в процессе этого реализуется значительная работа тока, киловатт-час является куда более адекватной данным условиям измерительной единицей.

Определение

Сначала с точки зрения основных единиц СИ, а затем с точки зрения других единиц СИ, джоуль определяется как

Jзнак равнокг⋅м2s2знак равноN⋅мзнак равноПа⋅м3знак равноW⋅sзнак равноC⋅Vзнак равноΩ⋅А2⋅s,{\ displaystyle {\ text {J}} = {\ frac {{\ text {kg}} {\ cdot} {\ text {m}} ^ {2}} {{\ text {s}} ^ {2} }} = {\ text {N}} {\ cdot} {\ text {m}} = {\ text {Pa}} {\ cdot} {\ text {m}} ^ {3} = {\ text {W }} {\ cdot} {\ text {s}} = {\ text {C}} {\ cdot} {\ text {V}} = {\ text {Ω}} {\ cdot} {\ text {A} } ^ {2} {\ cdot} {\ text {s}},}

куда

Условное обозначение Имея в виду
J джоуль
кг килограмм
м метр
s второй
N ньютон
Па паскаль
W ватт
C кулон
V вольт
Ω ом
А ампер

Один джоуль можно также определить следующим образом:

  • Работа, необходимая для перемещения электрического заряда в один кулон через разность электрических потенциалов в один вольт или один кулон-вольт (C⋅V). Это соотношение можно использовать для определения напряжения.
  • Работа, необходимая для производства одного ватта энергии за одну секунду или одну ватт-секунду (Вт⋅с) (сравните киловатт-час  — 3,6 мегаджоулей). Это соотношение можно использовать для определения ватт.

Джоуль назван в честь Джеймса Прескотта Джоуля . Как и каждый SI единицу имени для человека, его символ начинается с верхним корпусом буквой (J), но при записи в полном объеме следует правилам для капитализации нарицательного ; т. е. « джоуль » пишется с заглавной буквы в начале предложения и в заголовках, но в остальном — в нижнем регистре.

Ньютон-метр и крутящий момент

В механике понятие силы (в каком-то направлении) имеет близкий аналог в понятии крутящего момента (около некоторого угла):

Линейный Угловой
Сила Крутящий момент
Масса Момент инерции
Смещение Угол

Результатом этого сходства является то, что единицей СИ для крутящего момента является ньютон-метр , который алгебраически имеет те же размеры, что и джоуль, но не является взаимозаменяемым. Генеральная конференция по мерам и весам дала единицу энергии имени джоуло , но не дала единица крутящий момента какого — либо специального названия, следовательно , это просто ньютон-метр (Нм) — имя соединения , полученный из его составляющие части. Использование ньютон-метров для крутящего момента и джоулей для энергии помогает избежать недоразумений и недоразумений.

Различие также можно увидеть в том факте, что энергия является скалярной величиной — скалярным произведением вектора силы и вектора смещения. Напротив, крутящий момент представляет собой вектор — векторное произведение вектора силы и вектора расстояния. Крутящий момент и энергия связаны друг с другом уравнением

Eзнак равноτθ ,{\ Displaystyle Е = \ тау \ тета \,}

где E — энергия, τ — крутящий момент ( ), а θ — угол поворота (в радианах ). Поскольку плоские углы безразмерны, отсюда следует, что крутящий момент и энергия имеют одинаковые размеры.

Общие сведения

Энергия — физическая величина, имеющая большое значение в химии, физике, и биологии. Без нее жизнь на земле и движение невозможны. В физике энергия является мерой взаимодействия материи, в результате которого выполняется работа или происходит переход одних видов энергии в другие. В системе СИ энергия измеряется в джоулях. Один джоуль равен энергии, расходуемой при перемещении тела на один метр силой в один ньютон.

При этой температуре материал излучает излучение в видимой области. Тем не менее световая эффективность ламп накаливания довольно низкая. Предохранители — это устройства, которые используют эффект Джоуля для расплавления калиброванного проводника для изоляции электрической цепи в случае перегрузки по току. Термические выключатели используют один и тот же эффект, но без разрушения они сбрасываются.

Джоуль, названная в честь известного английского физика Джеймса Эдварда Джоуля, является одним из основных подразделений Международной метрической системы, джоуль — это единица работы, энергии и тепла, которая используется ежедневно в исследованиях. -развитие. Любая другая единица, такая как «книга» или «британская термическая единица», не подходит: сначала необходимо сделать конверсии.

Электрический проводник обладает свойством содержать в своей физической структуре то, что называется свободными электронами. Эти свободные электроны могут двигаться в материале до тех пор, пока им дается электрическая потенциальная энергия. Когда электроны начинают двигаться, происходит трение с «препятствиями», присутствующими внутри проводника, и это трение высвобождается в среду в виде тепла. Затем говорится, что электрическая энергия, подаваемая на этот проводник, была преобразована в тепловую энергию.

Название, данное проводнику, способному преобразовывать электрическую энергию в тепловую энергию, является резисторами, и это основные элементы, присутствующие при построении схем от простейших до самых сложных. Это явление произошло за счет нагревания материала за счет преобразования электрической энергии в тепловую энергию, называемое джоулевым эффектом.

Обогащение урана

В природном уране содержится 0,72 % изотопа 235U. При обогащении урана по изотопу 235U на завод поступает природный уран, а на выходе получают два потока: обогащенный уран и обедненный уран (т. н. отвалы). Типовые затраты на получение 1 кг обогащенного урана:

  • Для обогащения до 3,6 % с отвалами 0,2 % требуется 6,7 кг природного урана и 5,7 ЕРР.
  • Для обогащения до 3,6 % с отвалами 0,3 % требуется 8,2 кг природного урана и 4,5 ЕРР.
  • Для обогащения до 90 % с отвалами 0,2 % требуется 176 кг природного урана и 228 ЕРР.
  • Для обогащения до 90 % с отвалами 0,3 % требуется 219 кг природного урана и 193 ЕРР.

Чем меньше нужного изотопа уходит в отвал, тем меньше требуется исходного сырья, но тем больше затраты ЕРР.

Работа в термодинамике

Мвт — мегаватт. конвертер величин

В чем измеряется работа сил в термодинамике? Термодинамика рассматривает процессы преобразования системы, в результате которых меняется объём. При этом внутреннее изменение энергии тела есть работа. Лучше всего разобрать это на примере воздействия газа на поршень. Пусть газ давит на поверхность поршня с силой F→’. Она, согласно 3-му закону Ньютона, направлена в противоположную сторону той силе, с которой поршень воздействует на газ. Это значит, F→’ = – F→.

Под давлением газа (p) поршень начинает совершать перемещение ∆h. В случае, если оно мало, то можно говорить о том, что p = const. Тогда работа будет равна A’ = F’*∆h. Можно подставить сюда значение F’= p*S, где S – площадь поверхности, на которую давит газ. После этого выражение примет вид:

A’ = p*S*∆h = p*∆V,

где ∆V – изменение объёма.

Важно! Работа положительная, если газ расширяется. Это обусловлено тем, что поршень движется в ту же сторону, куда направлена F→’. При сжимании газа его работа имеет отрицательное значение, потому как поршень перемещается в противоположную от F→’ сторону

При сжимании газа его работа имеет отрицательное значение, потому как поршень перемещается в противоположную от F→’ сторону.


Работа в термодинамике

Значения других единиц, равные введённым выше

 открыть 

 свернуть 

Международная система (СИ)

джоуль в секунду → мегаватт
(МВт)
джоуль в секунду → киловатт
(кВт)
джоуль в секунду → ватт
(Вт)
джоуль в секунду → вольт-ампер
(В-А)

Единицы:

мегаватт
(МВт)

 /
киловатт
(кВт)

 /
ватт
(Вт)

 /
вольт-ампер
(В-А)

 открыть 

 свернуть 

СГС и внесистемные единицы

джоуль в секунду → гигакалорий в секунду
джоуль в секунду → килокалорий в секунду
джоуль в секунду → калорий в секунду
джоуль в секунду → гигакалорий в минуту
джоуль в секунду → килокалорий в минуту
джоуль в секунду → калорий в минуту
джоуль в секунду → гигакалорий в час
джоуль в секунду → килокалорий в час
джоуль в секунду → калорий в час
джоуль в секунду → котловая лошадиная сила
(hp(S))
джоуль в секунду → электрическая лошадиная сила
(hp(E))
джоуль в секунду → гидравлическая лошадиная сила
джоуль в секунду → механическая лошадиная сила
(hp(I))
джоуль в секунду → метрическая лошадиная сила
(hp(M))
джоуль в секунду → килограмм-сила метр в секунду
(кгс*м/с)
джоуль в секунду → джоуль в секунду
джоуль в секунду → джоуль в минуту
джоуль в секунду → джоуль в час
джоуль в секунду → эрг в секунду
джоуль в секунду → метрическая тонна охлаждения
(RT)
джоуль в секунду → фригория в час
(fg/h)

Единицы:

гигакалорий в секунду

 /
килокалорий в секунду

 /
калорий в секунду

 /
гигакалорий в минуту

 /
килокалорий в минуту

 /
калорий в минуту

 /
гигакалорий в час

 /
килокалорий в час

 /
калорий в час

 /
котловая лошадиная сила
(hp(S))

 /
электрическая лошадиная сила
(hp(E))

 /
гидравлическая лошадиная сила

 /
механическая лошадиная сила
(hp(I))

 /
метрическая лошадиная сила
(hp(M))

 /
килограмм-сила метр в секунду
(кгс*м/с)

 /
джоуль в секунду

 /
джоуль в минуту

 /
джоуль в час

 /
эрг в секунду

 /
метрическая тонна охлаждения
(RT)

 /
фригория в час
(fg/h)

 открыть 

 свернуть 

Британские и американские единицы

джоуль в секунду → американская тонна охлаждения
(USRT)
джоуль в секунду → британская термальная единица в секунду
(BTU/s)
джоуль в секунду → британская термальная единица в минуту
(BTU/min)
джоуль в секунду → британская термальная единица в час
(BTU/hr)
джоуль в секунду → фут фунт-сила в секунду
(ft*lbf/s)

Единицы:

американская тонна охлаждения
(USRT)

 /
британская термальная единица в секунду
(BTU/s)

 /
британская термальная единица в минуту
(BTU/min)

 /
британская термальная единица в час
(BTU/hr)

 /
фут фунт-сила в секунду
(ft*lbf/s)

 открыть 

 свернуть 

Естественнные единицы

В физике естественные единицы измерения базируются только на фундаментальных физических константах. Определение этих единиц никак не связано ни с какими историческими человеческими построениями, только с фундаментальными законами природы.

джоуль в секунду → планковская мощность
(L²MT⁻³)

Единицы:

планковская мощность
(L²MT⁻³)

Джоуль.

Джоуль – единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ). Имеет русское обозначение – Дж и международное обозначение – J.

Другие единицы измерения

Джоуль, как единица измерения:

Джоуль – единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ), названная в честь английского физика Джеймса Прескотта Джоуля.

Джоуль как единица измерения имеет русское обозначение – Дж и международное обозначение – J.

В классической физике джоуль равен работе, совершаемой при перемещении точки приложения силы, равной 1 (одному) ньютону (Н), на расстояние одного метра в направлении действия силы.

Дж = Н · м = кг · м2 / с2.

1 Дж = 1 Н · 1 м = 1 кг · 1 м2 / 1 с2.

В электричестве джоуль означает работу, которую совершают силы электрического поля за 1 секунду при напряжении в 1 вольт (В) для поддержания силы тока в 1 ампер (А). Это энергия, которая выделится за 1 секунду при прохождении тока через проводник силой тока 1 ампер (А) при напряжении 1 вольт (В).

В Международную систему единиц джоуль введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы джоуль пишется со строчной буквы, а её обозначение – с заглавной (Дж). Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием джоуля.

Представление джоуля в других единицах измерения – формулы:

Через основные единицы системы СИ джоуль выражается следующим образом:

Дж = Н · м

Дж = кг · м2 / с2.

Дж = Вт / с.

Дж = А2 · Ом · с.

Дж = В2 · с / Ом.

Дж = Кл · В.

где  А – ампер, В – вольт, Дж – джоуль, Кл – кулон, м – метр, Н – ньютон, с – секунда, Вт – ватт, кг – килограмм, Ом – ом.

Перевод в другие единицы измерения:

1 Дж ≈ 6,24151 ⋅ 1018 эВ

1 МДж = 0,277(7) кВт · ч

1 кВт · ч = 3,6 МДж

1 Дж ≈ 0,238846 калориям

1 калория (международная) = 4,1868 Дж

1 килограмм-сила-метр (кгс·м) = 9,80665 Дж

1 Дж ≈ 0,101972 кгс·м

Кратные и дольные единицы:

Кратные и дольные единицы образуются с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Дж декаджоуль даДж daJ 10−1 Дж дециджоуль дДж dJ
102 Дж гектоджоуль гДж hJ 10−2 Дж сантиджоуль сДж cJ
103 Дж килоджоуль кДж kJ 10−3 Дж миллиджоуль мДж mJ
106 Дж мегаджоуль МДж MJ 10−6 Дж микроджоуль мкДж µJ
109 Дж гигаджоуль ГДж GJ 10−9 Дж наноджоуль нДж nJ
1012 Дж тераджоуль ТДж TJ 10−12 Дж пикоджоуль пДж pJ
1015 Дж петаджоуль ПДж PJ 10−15 Дж фемтоджоуль фДж fJ
1018 Дж эксаджоуль ЭДж EJ 10−18 Дж аттоджоуль аДж aJ
1021 Дж зеттаджоуль ЗДж ZJ 10−21 Дж зептоджоуль зДж zJ
1024 Дж иоттаджоуль ИДж YJ 10−24 Дж иоктоджоуль иДж yJ

Интересные примеры:

Дульная энергия пули при выстреле из автомата Калашникова – 2030 Дж.

Энергия, необходимая для нагрева 1 литра воды от 20 до 100 °C, составляет 3,35⋅105 Дж.

Энергия, выделяемая при взрыве 1 тонны тринитротолуола (тротиловый эквивалент), – 4,184⋅109 Дж.

Примечание:  Фото https://www.pexels.com, https://pixabay.com

Найти что-нибудь еще?

карта сайта

формула энергии закон джоуля ленца можно тепловой 1 м дж джоуль ленц закон равен 2 2 равен единица теплота масса тела сила количество теплоты работа кинетическая энергия в джоулях в секунду 10 5 8 6 20 200 100 виды сколько степени джоулейкилоджоули скорость в джоули в кг килограммы 3 4 джоуля

Коэффициент востребованности
5 612

Калория

Джоуль в качестве универсальной энергетической единицы был введен в 1889 г. Но количество теплоты исследователи начали измеряли задолго до этого. Для этих целей была введена специальная единица — калория (от латинского слова calor — “тепло”), равная количеству теплоты, которое необходимо для нагревания одного грамма воды на один градус Цельсия при нормальном атмосферном давлении.

Калория (кал) и кратная ей единица — килокалория (ккал), до сих пор используются в качестве внесистемной единицы для некоторых областей деятельности. Например, килокалорию применяют в теплоэнергетике для расчетов потребленной тепловой энергии в домах, подключенных к централизованному отоплению в холодное время года.

Экспериментально установлено соответствие между калорией и джоулем, чтобы иметь возможность перевода количества тепла из одних единиц в другие:

  • 1 Дж = 0,2388 кал;
  • 1 кДж = 238,8 кал
  • 1 кал = 4,19 Дж;
  • 1 ккал = 4190 Дж.

Прибор для получения информации о количестве теплоты в научных экспериментах (физике, химии, биологии и медицине) называется калориметром. Внутреннее устройство калориметров определяется диапазоном температур, временем и характером изучаемых явлений.

Рис. 3. Примеры калориметров.

Расчет дульной энергии пневматики

Владельцы пневматического оружия, а также желающие его приобрести, часто задаются вопросом, насколько оно мощное. Следует сразу отметить, что пробивная способность пули зависит от многих факторов, таких как прочность материалов, дальность цели и другие. Но основным все же является дульная энергия, измеряемая в Джоулях.

Она равна произведению половины массы на квадрат скорости: E=1/2*m*v^2, где m – вес, v – начальная скорость.

К примеру, кинетическая энергия пули пистолета Макарова при весе 6,3 грамма и скорости 330 м/с составляет 343 Дж, автомата Калашникова при скорости 900 м/с равна 1377 Дж. И это не предел для боевого оружия. У духовых ружей эти показатели намного меньше.

Для того чтобы узнать мощность пневматической винтовки или пистолета, необходимо знать калибр дроби и скорость ее вылета. С первым параметром все ясно, так как производители указывают вес пулек на упаковках. Для вычисления скорости потребуется хронограф. Существуют электронные модели, которые выдают результат уже в джоулях. Поэтому владельцу даже не потребуется выполнять расчет самостоятельно. При отсутствии нужного инструмента в качестве параметра можно использовать заявленную производителем скорость. Ее часто указывают в техническом паспорте изделия. Владельцу лишь остается подставить нужные цифры и получить конечный результат.

Мощность в спорте

Оценивать работу с помощью мощности можно не только для машин, но и для людей и животных. Например, мощность, с которой баскетболистка бросает мяч, вычисляется с помощью измерения силы, которую она прикладывает к мячу, расстояния которое пролетел мяч, и времени, в течение которого эта сила была применена. Существуют сайты, позволяющие вычислить работу и мощность во время физических упражнений. Пользователь выбирает вид упражнений, вводит рост, вес, длительность упражнений, после чего программа рассчитывает мощность. Например, согласно одному из таких калькуляторов, мощность человека ростом 170 сантиметров и весом в 70 килограмм, который сделал 50 отжиманий за 10 минут, равна 39.5 ватта. Спортсмены иногда используют устройства для определения мощности, с которой работают мышцы во время физической нагрузки. Такая информация помогает определить, насколько эффективна выбранная ими программа упражнений.

Динамометры

Для измерения мощности используют специальные устройства — динамометры. Ими также можно измерять вращающий момент и силу. Динамометры используют в разных отраслях промышленности, от техники до медицины. К примеру, с их помощью можно определить мощность автомобильного двигателя. Для измерения мощности автомобилей используется несколько основных видов динамометров. Для того, чтобы определить мощность двигателя с помощью одних динамометров, необходимо извлечь двигатель из машины и присоединить его к динамометру. В других динамометрах усилие для измерения передается непосредственно с колеса автомобиля. В этом случае двигатель автомобиля через трансмиссию приводит в движение колеса, которые, в свою очередь, вращают валики динамометра, измеряющего мощность двигателя при различных дорожных условиях.

Этот динамометр измеряет крутящий момент, а также мощность силового агрегата автомобиля

Динамометры также используют в спорте и в медицине. Самый распространенный вид динамометров для этих целей — изокинетический. Обычно это спортивный тренажер с датчиками, подключенный к компьютеру. Эти датчики измеряют силу и мощность всего тела или отдельных групп мышц. Динамометр можно запрограммировать выдавать сигналы и предупреждения если мощность превысила определенное значение

Это особенно важно людям с травмами во время реабилитационного периода, когда необходимо не перегружать организм

Согласно некоторым положениям теории спорта, наибольшее спортивное развитие происходит при определенной нагрузке, индивидуальной для каждого спортсмена. Если нагрузка недостаточно тяжелая, спортсмен привыкает к ней и не развивает свои способности. Если, наоборот, она слишком тяжелая, то результаты ухудшаются из-за перегрузки организма. Физическая нагрузка во время некоторых упражнений, таких как велосипедный спорт или плавание, зависит от многих факторов окружающей среды, таких как состояние дороги или ветер. Такую нагрузку трудно измерить, однако можно выяснить с какой мощностью организм противодействует этой нагрузке, после чего изменять схему упражнений, в зависимости от желаемой нагрузки.

Автор статьи: Kateryna Yuri

Единицы мощности

Мощность измеряют в джоулях в секунду, или ваттах. Наряду с ваттами используются также лошадиные силы. До изобретения паровой машины мощность двигателей не измеряли, и, соответственно, не было общепринятых единиц мощности. Когда паровую машину начали использовать в шахтах, инженер и изобретатель Джеймс Уатт занялся ее усовершенствованием. Для того чтобы доказать, что его усовершенствования сделали паровую машину более производительной, он сравнил ее мощность с работоспособностью лошадей, так как лошади использовались людьми на протяжении долгих лет, и многие легко могли представить, сколько работы может выполнить лошадь за определенное количество времени. К тому же, не во всех шахтах применялись паровые машины. На тех, где их использовали, Уатт сравнивал мощность старой и новой моделей паровой машины с мощностью одной лошади, то есть, с одной лошадиной силой. Уатт определил эту величину экспериментально, наблюдая за работой тягловых лошадей на мельнице. Согласно его измерениям одна лошадиная сила — 746 ватт. Сейчас считается, что эта цифра преувеличена, и лошадь не может долго работать в таком режиме, но единицу изменять не стали. Мощность можно использовать как показатель производительности, так как при увеличении мощности увеличивается количество выполненной работы за единицу времени. Многие поняли, что удобно иметь стандартизированную единицу мощности, поэтому лошадиная сила стала очень популярна. Ее начали использовать и при измерении мощности других устройств, особенно транспорта. Несмотря на то, что ватты используются почти также долго, как лошадиные силы, в автомобильной промышленности чаще применяются лошадиные силы, и многим покупателям понятнее, когда именно в этих единицах указана мощность автомобильного двигателя.

Лампа накаливания мощностью 60 ватт

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер по всему
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector