Что такое коэффициент мощности и его влияние на сеть переменного тока

Простое объяснение с формулами

Активная мощность (P)

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

P = U I

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

P = U I Cosθ

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I — в цепях постоянного тока

P = U I cosθ — в однофазных цепях переменного тока

P = √3 UL IL cosθ — в трёхфазных цепях переменного тока

P = 3 UPh IPh cosθ

P = √ (S2 – Q2) или

P =√ (ВА2 – вар2) или

Активная мощность = √ (Полная мощность2 – Реактивная мощность2) или

кВт = √ (кВА2 – квар2)

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

Q = U I sinθ

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Как влияет на майнеров коэффициент мощности?

При наличии большого количества мощных потребителей (например, компьютеров, выполняющих вычисления в ходе майнинга), производится подключение множества импульсных блоков питания к одному вводу электричества из сети переменного тока. В этом случае, при недостаточной компенсации фактора мощности может значительно возрастать влияние на электрическую сеть, в особенности на ее проводку, устройств, подключенных к ней. Негативное влияние может проявляться в повышенном износе проводки (особенно нулевого провода в трехфазной сети) из-за значительного увеличения протекающих по ней токов, неравномерной нагрузке на сеть, что приводит к несоответствию стандартам ее основных параметров (напряжение, частота и синусоидальная форма тока) и в виде других проявлений.

Например, при входной мощности устройства, равной 60 ватт, в сети переменного тока напряжением 115 вольт на устройстве с PF=1.0, входной RMS-ток равен 521 mA. Если имеется сдвиг по фазе между током и напряжением, например, коэффициент мощности равен 0.4, то увеличивается полная потребляемая мощность, необходимая для отдачи необходимых 600 ватт активной мощности, входной RMS-ток при этом возрастает до 1.3 ампер, что в 2.5 раза увеличивает требования к проводам питания:

В сетях с напряжением 230 вольт ток увеличивается не так сильно, но влияние фактора мощности также существенно.

Увеличение коэффициента мощности позволяет уменьшить потери электроэнергии, снизить нагрузку на провода, подводящие переменный электрический ток к потребителям, уменьшить вероятность их перегрева, а также оптимально использовать мощности, подаваемые от поставщиков электрической энергии. Кроме того, компенсация влияния низкого фактора мощности обеспечивает устранение или значительное уменьшение искажений формы сетевого напряжения.

Все современные мощные импульсные блоки питания, в том числе использующиеся для майнинга, имеют специальные схемы коррекции мощности. Недостатком схем коррекции коэффициента (фактора) мощности является уменьшение надежности устройств, в которых они работают. Это связано с тем, что они работают на высоких напряжениях и мощностях, что требует использования компонентов хорошего качества, а также правильного проектирования и расчета режима их работы. Чем больше электронных компонентов содержит электрический прибор, тем больше вероятность его выхода из строя. Даже дорогие блоки питания иногда ломаются. Так как узлы PFC работают в высоковольтной части импульсных источников питания, то их поломка может привести к печальным последствиям.

В современных квартирах, в которых используются электрические плиты и/или используется электрическое отопление, подача энергии обычно осуществляется через три фазы и один нулевой провод. В связи с этим, даже при равномерном распределении нагрузки по фазам, на нулевой провод приходится в три раза больший ток. Нужно понимать, что установка схем коррекции фактора мощности уменьшает воздействие фактора мощности, но в полной мере не снимает повышенной нагрузки с нулевого провода у многофазных потребителей. Если такие потребители полностью нагружают все три фазы (например, для майнинга), то нужно использовать высококачественный медный нулевой провод большего, чем у фаз сечения.

Бирка (шильдик) электродвигателя

Осмотрев любой, за редким исключением, электродвигатель можно обнаружить табличку, привинченную на болты, саморезы или же заклепки. Что же написано на данном куске металла? Возьмем шильдик, заменив на нем заводской номер на название сайта.

Кстати, редко бывает, что табличка на электрооборудование находится в таком, почти идеальном состоянии. Часто данные выцветают или замазаны краской, ведь задача стоит для обслуживающего персонала покрасить двигатель, а не покрасить двигатель, оставив табличку нетронутой. Но, нам повезло. Пойдем по-порядку.

Первая строчка

— число фаз и тип тока (3

), заводской номер, частота сети, форма исполнения и монтажа, класс изоляции

Вторая строчка

— тип электродвигателя, косинус фи, возможные схемы соединения, номинальная частота вращения

Третья строчка

— возможные номинальные напряжения, номинальная мощность, IP — степень защиты электродвигателя, масса, режим работы электродвигателя (S1).

Четвертая строчка

— номинальные токи в зависимости от схемы включения обмоток, далее какому госту соответствует эд.

Рассмотрим отдельные параметры более подробно.

Мощность электродвигателя: полная, активная и на валу

Формула для расчета мощности трехфазного асинхронного двигателя:

S1 — полная мощность, потребляемая двигателем из сети

P1 — активная мощность, потребляемая электродвигателем из сети (указана на шильдике)

P — активная мощность на валу ЭД.

cosf — косинус фи, коэффициент мощности — угол сдвига фаз между активной (P) и полной мощностью (S).

В формулах выше, значение мощности получится в Вт, значение полной мощности в ВА. Чтобы перевести в киловатты необходимо получившееся значение разделить на тысячу. Значение тока и напряжения соответственно в формуле выше в амперах и вольтах.

I1 и U1 — линейные значения тока и напряжения, их еще называют междуфазными. Не стоит путать с фазными. Линейные — это АВ, ВС, СА (380); фазные — АО, ВО, СО (220). Если выразить формулы мощностей через фазные значения тока и напряжения, то вместо корня из трех вначале будет коэффициент 3. Этот коэффициент определяется наглядно через векторную диаграмму трехфазного напряжения.

Для двигателей постоянного тока формула будет просто произведение напряжения на зажимах двигателя умножить на ток, потребляемые двигателем из сети.

Потребляемая мощность p1 больше мощности на валу ЭД из-за потерь, которые возникают при преобразовании электрической энергии в механическую.

Звезда/Треугольник и 220/380, 380/660

Смотреть все значения по порядку как они идут через дробь. То есть написано на шильде Y/D ( треугольник/звезда), значит и токи, напряжения соответственно будут сначала для Y, а после дроби для звезды. Единственно, нюанс, что при 220/380 — треугольник будет 220, А при 380/660 — треугольник будет 380. То есть говорить, что 380 — это всегда звезда — неверно.

Всегда изучайте табличку на движке перед подключением.

Достоинства при подключении звездой и треугольником абстрактны, так как каждая схема имеет свои области применения:

Наиболее распространенным типом промышленных силовых установок являются асинхронные электродвигатели. Один из наиболее важных их параметров — мощность электродвигателя, которая в зависимости от модели может варьироваться в широких пределах. От мощности зависит тип энергосистемы, к которой двигатель можно подключить, а также тип и производительность оборудования, с которым он будет сопряжен. По этой причине, не зная мощность электродвигателя, использовать его практически невозможно.

Определение мощности электромотора по размерам сердечка статора

Если технического паспорта нет, можно произвести расчет мощности электродвигателя, исходя из размеров сердечника статора и частоты вращения. Для этого используется формула P2H = C * D1 2 / N1 * 10 -6 кВт. Здесь: С —постоянная мощность; D — размер внутреннего диаметра сердечника статора в см; l — длина статора в см; N1 — значение синхронной частоты вращения в об/мин.

Постоянная мощность зависит от частоты вращения и габаритов мотора. Она определяется по величине полюсного деления как зависимость мощности от количества полюсов и размеров полюсного деления τ, если U1 Рисунок 1. Шильдик с параметрами на корпусе электродвигателя Работая с электромоторами, нужно знать, как по шильдику определяется потребляемая мощность электродвигателя. Значение мощности Р — это не электрическая мощность мотора, а механическая мощность на валу, обозначенная в кВт.

Анализ полученных результатов обследования

На предприятии нужно было выбрать компенсирующую установку для увеличения коэффициента мощности

Но перед её покупкой было решено обратить внимание на гармоники

В ГОСТ 13109-97 указан допустимый уровень гармонических искажений по напряжению, равный 8%. По проведенным измерениям, этот уровень не превышен. Однако, при увеличении мощности в 5 раз можно ожидать увеличение процента гармоник (THD) в то же количество раз. Следовательно, возможно увеличение коэффициента гармоник с 2,3 % до 11,5 %.

Однако, по рекомендациям производителей для безопасной эксплуатации батарей конденсаторов установок стандартного исполнения уровень THD не должен превышать 2 %. При этом уровень гармоник тока не учитывается и ГОСТом не регламентируется.

Следовательно, необходимо применять совместно с конденсаторными установками фильтры высших частот (фильтрокомпенсирующие устройства).

Коррекция коэффициента мощности

Он уменьшается посредством работы трансформаторов, систем освещения и двигателей асинхронного типа. Увеличить показать, то есть корректировать его к высокому углу, получается при помощи конденсаторов, двигателей асинхронного типа и генераторов. Поэтому они устанавливаются как дополнения в стандартную цепочку. Популярные методики коррекции:

  • установка конденсатора — параметры реактивной уменьшаются, то по формуле приводит к увеличению значения;
  • установка малой нагрузки — получить результат возможно при работе двигателей асинхронного типа;
  • выбор безопасных условий работы — не допуск к работе, если показатели номинального напряжения повышены;
  • своевременное проведение плановых отслуживающих работ — нагрузка определяет время работы, внимательно относиться стоит к оборудованию, которое постоянно работает при высоких показателях номинального напряжения.

Корректировка обязательна на производственных ресурсах, а также для оборудования, которое применяется в хозяйственных, индивидуальных целях. Методика позволяет эономить средства, особенно если речь идет о крупных производствах.

Отрицательный косинус

Из школьного курса геометрии известно, что cos (φ) = cos (-φ), то есть косинус любого угла будет положительной величиной. Но как же отличить индуктивную нагрузку от емкостной? Всё просто – электрики всех стран условились, что при емкостной нагрузке перед знаком косинуса ставится минус!

В практике пользования прибором анализа напряжения HIOKI у меня были случаи, когда значение косинуса было отрицательным. В последствии выяснилось, что была неправильно включена компенсаторная установка и произошла перекомпенсация. То есть cos φ < 0, что и должно быть, но конденсаторные установки используются неправильно, и возможны ситуации, когда напряжение в сети из-за этого может подняться.

Косинус фи (cos φ) или Коэффициент мощности

На шильдиках двигателей и некоторых других устройств можно видеть непонятный параметр косинус фи (cos φ). Что этот параметр означает, в данной статье коротко объясняется, что это такое. Косинус фи (cos φ) часто называют «Коэффициент мощности». Это почти одно и то же при правильной синусоидальной форме тока. Иногда для обозначения коэффициента мощности используется λ, эту величину выражают в процентах, или PF.

Условные обозначения

P — активная мощность S — полная мощность Q — реактивная мощность, U — напряжение I — ток.

Что такое Косинус фи (cos φ) — «Коэффициент мощности»

Косинус фи (cos φ) это косинус угла между фазой напряжения и фазой тока. При активной нагрузке фаза напряжения совпадает с фазой тока, φ (между фазами) равен 0 (нулю). А как мы знаем cos0=1. То есть при активной нагрузке коэффициент мощности равен 1 или 100%.

Активная нагрузка

При емкостной или индуктивной нагрузке фаза тока не совпадает с фазой напряжения. Получается «сдвиг фаз». При индуктивной или активно-индуктивной нагрузке (с катушками: двигатели, дросселя, трансформаторы) фаза тока отстает от фазы напряжения. При емкостной нагрузке (конденсатор) фаза тока опережает фазу напряжения А почему тогда косинус фи (cos φ) это тоже самое что коэффициент мощности, да потому что S=U*I. Посмотрите на графики ниже. Здесь φ равно 90 косинус фи (cosφ)=0(нулю).

Индуктивная нагрузка

Попытаемся вычислить мощность для простоты возьмем максимальное значение напряжения равное 1(100%) в этот момент ток равен 0(нулю) соответственно их произведение, то есть мощность равны 0(нулю). И наоборот когда ток максимальный напряжение равно нулю. Получается что полезная, активная мощность равна 0(нулю).

Коэффициент мощности это соотношение полезной активной мощности к полной мощности, то есть cosφ=P/S.

Треугольник мощностей

Посмотрите на треугольник мощностей. Вспомним тригонометрию (это что то из математики) вот здесь то она нам и пригодится.

Q =U x I x sin φ

На практике. Если подключить асинхронный двигатель в сеть без нагрузки, в холостую. Напряжение вроде как есть, ток, если замерить тоже есть, при этом ни какой полезной работы не совершается. Соответственно активная мощность минимальна. Если на двигателе увеличить нагрузку то сдвиг фаз начнет уменьшаться и соответственно косинус фи (cos φ) будет увеличиваться, а с ним и активная мощность.

Единица измерения

Ватт является общей единицей для всех видов мощности, которая символизируется как «W», но блок обычно зарезервирован для активной мощности. Он практически измеряется в киловаттах (кВт) и мегаваттах (МВт) в электроэнергетических системах. Реактивная мощность – это форма мощности, но она не выражается в ваттах. Вместо этого он выражается реактивным вольт-амперным реактивным (var) в электроэнергетических системах переменного тока. Он обычно существует, когда форма волны тока и сигнал напряжения не соответствуют фазе, обычно на 90 градусов. Термин «вар» широко используется во всей энергетике.

  1. Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром. Также с этой задачей легко справится цифровой ваттметр.

    Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

    1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
    2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

    Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

    Для индивидуального пользования активная и реактивная электроэнергия в счетах не разделяется – в масштабах потребления доля реактивной энергии невелика. Поэтому частные клиенты при потреблении мощности до 63 А оплачивают один счет, в котором вся потребляемая электроэнергия считается активной. Дополнительные потери в цепи на реактивную электроэнергию отдельно не выделяются и не оплачиваются.

Активная мощность или реальная мощность символизируется заглавной буквой «P», тогда как реактивная мощность обозначается заглавной буквой «Q». Активная мощность – это реальная мощность, рассеиваемая на нагрузках, которые затем преобразуются в другие виды энергии. В цепи переменного тока, если приложенное напряжение равно «V», а оборотным током «I», тогда среднее значение активной мощности равно P = VI cos φ, где φ – фазовый угол между током и напряжением. Формула для реактивной мощности Q = VI sin φ, где «I sin φ» здесь представляет ток, не соответствует фазе с напряжением.

  1. При расчете необходимо учитывать и пусковые токи устройства. Например, сопротивление нити накаливания в лампочке в момент включения в 10 раз меньше, чем в рабочем режиме. Следовательно, пусковой ток этой лампочки в 10 раз больше. Через некоторое время она начнет потреблять ту мощность, которая записана в данных этой лампочки. Поэтому, при включении она перегорает за счет больших пусковых токов.

    В радиоэлектронной аппаратуре пока не зарядится конденсатор в блоке питания, также образуется пусковой ток.

    В нагревательных приборах пусковой ток образуется, пока спираль не нагреется до дежурной температуры.

Активная мощность – это сила, проявляющаяся в различных физических формах, таких как электромагнитное излучение или механическая форма или акустические волны, если на то пошло. Рассмотрим пример колеса-кургана, маленькой ручной тележки с одним колесом и предназначенной для толкания одного человека. Активная мощность здесь – это работа, выполняемая на колесах для перевозки предметов из одного места в другое, что является фактической работой. Реактивная сила – это воображаемая сила, которая не делает никакой полезной работы сама по себе, но это то, что удерживает курган в поднятом положении. Реактивная мощность используется для управления напряжением во многих промышленных средах для преодоления колебаний уровней напряжения.

§ 75. Коэффициент мощности («косинус фи»)

Коэффициентом мощности, или «косинусом фи» (cos φ), цепи называется отношение активной мощности к полной мощности.

Коэффициент мощности = активная мощность
полная мощность

или

cos φ = P/S = P/UI = P/√(P2 + Q2).

В общем случае активная мощность меньше полной мощности, т. е. у этой дроби числитель меньше знаменателя, и поэтому коэффициент мощности меньше единицы.

Только в случае чисто активной нагрузки, когда вся мощность является активной, числитель и знаменатель этой дроби равны между собой, и поэтому коэффициент мощности равен единице.

Чем большую часть полной мощности составляет активная мощность, тем меньше числитель отличается от знаменателя дроби и тем ближе коэффициент мощности к единице.

Величину cos φ можно косвенно определить по показаниям ваттметра, вольтметра и амперметра:

cos φ = P/UI.

Коэффициент мощности можно также измерить особым прибором — фазометром.

Пример 14. Амперметр показывает ток 10 а, вольтметр — 120 в, ваттметр — 1 квт. Определить cos φ потребителя:

S = IU = 10 ⋅ 120 = 1200 ва,

cos φ = P/S = 1000/1200 = 0,83.

Пример 15. Определить активную мощность, отдаваемую генератором однофазного переменного тока в сеть, если вольтметр на щите генератора показывает 220 в, амперметр — 20 а и фазометр — 0,8:

Р = IU cos φ = 20 ⋅ 220 ⋅ 0,8 = 3520 вт = 3,52 квт.

Полная мощность

S = IU = 20 ⋅ 220 = 4400 ва = 4,4 ква.

Пример 16. Вольтметр, установленный на щитке электродвигателя, показывает 120 в, амперметр — 450 а, ваттметр — 50 квт. Определить z, r, xL, S, cos φ, Q:

z = U/I = 120/450 = 0,267 ом.

Так как Р = I2 ⋅ r, то

r = Р/I2 = 50000/4502 = 0/247 ом;

xL = √(z2 — r2) = √(0,2672 — 0,2472) = √0,01 = 0,1 ом;

S = IU = 450 ⋅ 120 = 54000 ва = 54 ква;

cos φ = Р/S = 50000/54000 = 0,927;

Q = √(S2 — Р2) = √(540002 — 500002) = √416000000 = 20396 вар = 20,396 квар.

Из построения треугольников сопротивлений, напряжений и мощностей для определенной цепи видно, что эти треугольники подобны один другому, так как их стороны пропорциональны. Из каждого треугольника можно найти «косинус фи» цепи, как показано на рис. 168. Этим можно воспользоваться для решения самых разнообразных задач.

Рис. 168. Определение коэффициента мощности из треугольников сопротивлений (а), напряжений (б) и мощностей (в)

Пример 17. Определить z, xL, U, Uа, UL, S, Р, Q, если I = 6 а, r = 3 ом, cos φ = 0,8 и ток отстает по фазе от напряжения.

Из треугольника сопротивлений известно, что

cos φ = r/z,

отсюда

z = r/cos φ = 3/0,8 = 3,75 ом;

U = I ⋅ z = 6 ⋅ 3,75 = 22,5 в;

xL = √(z2 — r2) = √(3,752 — 32) = √(14,06 — 9) = √5,06 = 2,24 ом;

Uа = Ir = 6 ⋅ 3 = 18 в;

UL = IxL = 6 ⋅ 2,24 = 13,45 в;

S = IU = 6 ⋅ 22,5 = 135 ва,

или

P = I2r = 36 ⋅ 3 = 108 вт;

Р = IU cos φ = 6 ⋅ 22,5 ⋅ 0,8 = 108 вт;

Q = IUL = 6 ⋅ 13,45 = 81 вар,

или

Q = √(S2 — P2) = √(1352 — 1082) = √6561 = 81 вар,

или

Q = I2xL = 62 ⋅ 2,24 = 81 вар.

Основными потребителями электрической энергии являются электрические двигатели, машины и электронагревательные устройства. Все они потребляют активную мощность, которую преобразуют в механическую работу и тепло. Электрические двигатели потребляют также реактивную мощность. Последняя, как известно, совершает колебательное движение от источника к двигателю и обратно.

У ламп и электрических печей сопротивления S = Р и cos φ = 1. У электрических двигателей S = √(P2 + Q2) и cos φ меньше 1.

При неизменной передаваемой активной мощности Р величина нагрузочного тока обратно пропорциональна значению cos φ:

I = P/U⋅cosφ

Это означает, что при тех же значениях активной мощности Р и напряжения U нагрузочный ток электрических двигателей больше, чем у электрических ламп. Если, например, коэффициент мощности электрического двигателя равен 0,5, то он потребляет в 2 раза больший ток, чем электрическая печь сопротивления той же мощности Р.

Потери мощности на нагрев проводов линии пропорциональны квадрату тока (ΔР = I2r).

Таким образом, при cos φ = 0,5 потери мощности в линии, по которой энергия передается потребителям, больше в 4 раза, чем при cos φ = 1. Кроме того, генераторы и трансформаторы будут загружены током в 2 раза больше и в этом случае требуется примерно в 2 раза большее сечение проводов для обмоток.

Отсюда видно, какое важное значение имеет величина cos φ в электроэнергетических установках. Для повышения коэффициента мощности промышленных установок, на которых преобладающая часть потребителей — электрические двигатели, параллельно им включают конденсаторы, т

е. добиваются резонанса токов, при котором cos φ близок к 1.

Различия

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Вам это будет интересно Особенности единиц измерения кВТ и кВА

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания

Смысл реактивной нагрузки

Любая реактивная нагрузка создает временной сдвиг между фазами тока и напряжения. Эту величину измеряют в градусах. Наиболее наглядным является векторное представление электрических параметров. Если подключить индуктивность, напряжение будет опережать ток. Угол между ними обозначают в формулах буквой «ϕ» («Фи» греч.).

Временные и векторные диаграммы показывают, как изменяются основные параметры при подключении индуктивных (емкостных) элементов

На картинке показано, что при подключении емкостной нагрузки вектора «меняются» местами. В идеальных условиях сдвиг между векторами равен 90°. В действительности следует учитывать влияние электрического сопротивления цепи, несовершенство конструкций. С учетом особенностей элементов следует напомнить, что в индуктивности (емкости) при сохранении параметров источника питания плавно изменяется ток (напряжение), соответственно.

Почему в сети напряжение переменное

Для объяснения настоящей ситуации надо сделать краткий экскурс в историю. Электричество известно человеку сотни (по некоторым данным, тысячи лет). Однако действительно массовое использование этой энергии началось сравнительно недавно – в конце 19 века. Именно тогда (1879 г.) Эдисон запатентовал первый функциональный прибор, который помогал решать проблемы освещения. Для питания лампочек он стал монтировать сети постоянного тока.

Через десять лет Тесла создал генераторы переменного тока. После ожесточенной конкурентной борьбы именно его способ передачи энергии на расстояния одержал победу. Этот результат был обеспечен скорее рыночными методами, чем внимательным сравнением потребительских характеристик.

К сведению. Метрополитен Нью-Йорка до сих пор функционирует с подключением к сети постоянного тока.

Источники

  • https://www.asutpp.ru/reaktivnaya-moschnost.html
  • https://VashTehnik.ru/enciklopediya/reaktivnaya-moshhnost.html
  • https://FB.ru/article/191380/chto-takoe-aktivnaya-i-reaktivnaya-elektroenergiya
  • https://amperof.ru/teoriya/reaktivnaya-moshhnost.html
  • https://rusenergetics.ru/ustroistvo/reaktivnaya-moschnost

Особенности измерения

Данные для расчета показателя собирают вручную и делают это на ежедневной основе. Значение потенциальной величины мощности формируют на протяжении кого-либо периода и потом его используют для подстановки в формулу. А фактическую занятость засекают каждый раз или по возможности используют для этого приборы учета.

Важно! КИМ может рассчитываться как для одного станка или производственной линии, так и целого цеха или всего предприятия. Поэтому и данные необходимы за разные промежутки времени: для одной единицы техники можно их собирать каждый час, а для предприятия коэффициент находят за более длинные периоды (месяц, квартал, год). Для быстрого и точного получения информации необходимо настроить ее автоматический сбор

Затраты на ручное ведение статистики могут быть сильно высокими

Для быстрого и точного получения информации необходимо настроить ее автоматический сбор. Затраты на ручное ведение статистики могут быть сильно высокими.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер по всему
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: