Калькулятор дробей

Деление смешанных чисел

При делении смешанных чисел надо представить числа в виде неправильных дробей, а потом разделить их друг на друга по правилу деления дроби на дроби.

Онлайн калькулятор дробей позволяет производить простейшие арифметические операции с дробями: сложение дробей, вычитание дробей, умножение дробей, деление дробей. Чтобы произвести вычисления, заполните поля соответствующие числителям и знаменателям двух дробей. Если дробь имеет вид «смешанной дроби», то также заполните поле, соответствующее целой части дроби. Если у дроби нет целой части, т.е. дробь имеет вид «простой дроби», то оставьте данное поле пустым. Затем нажмите кнопку «Вычислить».

Дробью в математике называется число, представляющее часть единицы или несколько её частей. Обыкновенная дробь записывается в виде двух чисел, разделенных обычно горизонтальной чертой, обозначающей знак деления. Число, располагающееся над чертой, называется числителем. Число, располагающееся под чертой, называется знаменателем. Знаменатель дроби показывает количество равных частей, на которое разделено целое, а числитель дроби — количество взятых этих частей целого.

Дроби бывают правильными и неправильными. Правильной называется дробь, у которой числитель меньше знаменателя. Если у дроби числитель больше знаменателя, то такая дробь называется неправильной. Смешанной называется дробь, записанная в виде целого числа и правильной дроби, и понимается как сумма этого числа и дробной части. Соответственно, дробь, не имеющая целую часть,называется простой дробью. Любая смешанная дробь может быть преобразована в неправильную простую дробь (см. пример ниже).

Как разделить целое число на дробь?

Если в формуле (a/b):(c/d)= ad/bc, которую мы нашли вот здесь выразить целое число a через дробь (то есть разделить это число a на 1 вместо принятого в той формуле b) то получится a:(с/d)=(a/1): (с/d)= ad/c, то есть по сути, нужно умножить это целое число не перевернутую дробь.

Ну это вопрос достаточно легкий, просто запомнить, что когда целое число надо разделить на дробь, то целое число представьте в виде дроби, то есть разделите его на единицу.

То есть целое число 15, это будет числитель 15, знаменатель 1

Целое число 31, это будет числитель 31, а знаменатель 1.

И по такому принципу действуете всегда.

Затем эту дробь надо разделить на другую дробь. А правило гласит, что когда дробь делим на дробь, то вторую дробь надо перевернуть и у нас в итоге получается умножение, которое мы производим, умножая числители друг на друга и знаменатели друг на друга.

5:3/15 = 5/1 : 3/15 = 5/1 * 15/3 = 75/3 сокращаем на 3 = 25/1 или = 25

Задача деления целого числа на дробь не очень сложная , если помнить что при делении на дробь, она всегда переворачивается. То есть вместо того, чтобы делить целое число на дробь, мы проводим две последовательных операции — сперва умножаем данное целое число на знаменатель дроби, а потом результат делим на числитель этой дроби.

Надо поделить 15 на 3/5. Выполняем деление: 15*5 = 75. 75/3 = 25.

Итак в ответе мы получаем 25.

Запомните, при деление целого числа на правильную дробь, результат увеличивается и будет больше исходного числа.

При необходимости поделить на десятичную дробь, ее легко можно представить как обычную, или домножить первое число на порядок дроби и потом поделить на значимые цифры.

Надо поделить 15 на 0.6. Выполняем деление: 15*10 = 150. 150/6 = 25.

Ответ опять 25, так как дроби 3/5 и 0.6 равны между собой.

Правило деления целых отрицательных чисел, примеры

Для формулировки правила необходимо применить рассуждения. Если необходимо поделить целые отрицательные числа a на b, то искомое частное получится равным с. Форма записи: ab=c. После чего можно выяснить, чему равна абсолютная величина с.

Исходя из смысла деления равенство b·c=a справедливо. Значит, b·c=a. Благодаря свойствам модуля, можно записать равенство b·c=b·c, значит, и b·c=a. Отсюда получаем, что c=ab. Абсолютная величина частного от деления равняется частному от деления модулей делимого и делителя.

Для определения знака числа с необходимо выяснить, какие знаки находятся перед делимым и делителем.

Исходя из смысла деления целых чисел, равенство b·c=a справедливо. Правило умножения целых чисел говорит о том, что частное должно быть положительным. Иначе, b·c будет производиться по правилам целых отрицательных чисел. Частное с от деления целых отрицательных целых чисел является положительным числом.

Объединить в правило деления: чтобы разделить целое отрицательное число на отрицательное, необходимо разделить делимый на делитель по модулю. Эта запись будет выглядеть так ab=ab, при а и b равными отрицательным числам.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

Рассмотрим несколько примеров деления отрицательных чисел.

Пример 3

Разделить -92 на -4.

Решение

Используя правила деления целых отрицательных чисел, получим, что следует делить по модулю. Получим, что -92-4=-92-4=924=23

Ответ: (−92)(−4)=23.

Пример 4

Вычислить -512 (-32).

Решение

Для решения необходимо разделить числа по модулю. Деление производится столбиком.

Ответ: (−512)(−32)=16.

Деление смешанного числа на смешанное число

Деление смешанных чисел может быть сведено к делению обыкновенных дробей. Для этого достаточно смешанные числа перевести в неправильные дроби.

Запишем правило деления смешанных чисел: чтобы выполнить деление смешанного числа на смешанное число, надо:

  • ;
  • выполнить деление соответствующих обыкновенных дробей.

Осталось разобрать пример деления смешанных чисел.

Пример.

Чему равен результат деления смешанного числа на смешанное число ?

Решение.

Чтобы свести деление смешанных чисел к делению обыкновенных дробей, переведем смешанные числа в неправильные дроби, получаем и .

Таким образом, . Теперь воспользуемся правилом деления обыкновенных дробей: . На этом этапе можно выполнить сокращение дроби: . Так деление смешанных чисел закончено.

Ответ:

.

Задача

Чтобы понять все это на живом примере, давайте рассмотрим такую задачу: «1 кг яблок стоит 40 р. Сколько тогда будут стоить 3 кг этих яблок?»

И ежику понятно, что подобная задача решается умножением количества килограммов на стоимость за 1 кг, т. е. 40*3 = 120 рублей.

Теперь попробуем понять и решить похожую задачу, но с дробями. Посчитаем: «1 кг яблок стоит 40 рублей. Какова будет стоимость 3/4 кг таких яблок?»

Эта задача, как и предыдущая, тоже решается перемножением стоимости яблок за 1 кг на требуемый нам вес.

В данную задачу можно подставить любую другую дробь, будь то 2/3 или же 3/7, не меняя при этом концепции и условий самой задачи.

Как мы выяснили ранее, если не трогать основной смысл задач и не менять ничего, кроме чисел, то мы можем применять одинаковое действие при решении заданий, которое называется умножением. Все гениальное просто, не так ли?

Все-таки давайте вернемся к нашему главному вопросу: умножение целого на части. Как это сделать?

Для примера возьмем опять нам всем полюбившуюся задачу про яблоки. Разберем числа, которые там встречаются:

40 * 3/4 =?

Если снова взглянуть на определение, то найти нам нужно 3/4 от 40. Давайте начнем с более простого и попробуем найти четверть от 40, а только потом уже 3/4.

Четверть (т. е. 1/4) от 40 это 40/4;

3/4 от 40 является значение (3*40)/4.

Что мы имеем:

40*3/4 = (40*3)/4 = 10*3 = 30.

Давайте посмотрим другой случай: 40 * 5/8 равно чему?

  • 1/8 от 40 это 40/8;
  • 5/8 от 40 составляют (5*8)/40;
  • В итоге получается: 40 * 5/8 = (40*5)/8 = 5*5 = 25.

Шаги

Метод 1 из 4: Перечисление кратных

1
Перечислите кратные каждого знаменателя. Составьте список из нескольких кратных для каждого знаменателя в уравнении. Каждый список должен состоять из произведения знаменателя на 1, 2, 3, 4 и так далее.

Пример: 1/2 + 1/3 + 1/5

Кратные 2: 2 * 1 = 2; 2 * 2 = 4; 2 * 3 = 6; 2 * 4 = 8; 2 * 5 = 10; 2 * 6 = 12; 2 * 7 = 14; т.д.

Кратные 3: 3 * 1 = 3; 3 * 2 = 6; 3 *3 = 9; 3 * 4 = 12; 3 * 5 = 15; 3 * 6 = 18; 3 * 7 = 21; т.д.

Кратные 5: 5 * 1 = 5; 5 * 2 = 10; 5 * 3 = 15; 5 * 4 = 20; 5 * 5 = 25; 5 * 6 = 30; 5 * 7 = 35; т.д.

2
Определите наименьшее общее кратное. Просмотрите каждый список и отметьте любые кратные числа, которые являются общими для каждого оригинального знаменателя

После выявления общих кратных определите наименьший знаменатель.

Обратите внимание, что если не найден общий знаменатель, возможно, потребуется продолжить выписывать кратные до тех пор, пока не появится общее кратное число.
Пример: 2 * 15 = 30; 3 * 10 = 30; 5 * 6 = 30

НОЗ = 30

3
Перепишите исходное уравнение. Числители будут равны произведению на число, равное частному от деления НОЗ на соответствующий знаменатель.

Пример: 15 * (1/2); 10 * (1/3); 6 * (1/5)
Новое уравнение: 15/30 + 10/30 + 6/30

4
Решите

После нахождения НОЗ и изменения соответствующих дробей, просто вычислите значение этого сложения.

Пример: 15/30 + 10/30 + 6/30 = 31/30 = 1 1/30

Метод 2 из 4: Использование наибольшего общего делителя

  1. 1
    Вычислите наибольший общий делитель (НОД) для каждого знаменателя. Найдите НОД через перечисление возможных делителей каждого знаменателя.

  2. Пример: 3/8 + 5/12
  3. Делители 8: 1, 2, 4, 8
  4. Делители 12: 1, 2, 3, 4, 6, 12
  5. НОД: 4
  6. 2
    Перемножьте знаменатели между собой.

  7. Пример: 8 * 12 = 96
  8. 3
    Разделите полученное значение на НОД. Полученное число будет наименьшим общим знаменателем (НОЗ).

  9. Пример: 96 / 4 = 24
  10. 4
    Перепишите исходное уравнение. Числители будут равны произведению на число, равное частному от деления НОЗ на соответствующий знаменатель.

  11. Пример: 24 / 8 = 3; 24 / 12 = 2
  12. 3 * (3/8) = 9/24; 2 * (5/12) = 10/24
  13. 9/24 + 10/24
  14. 5
    Решите уравнение. НОЗ найден; просто найдите значение этой суммы.

  15. Пример: 9/24 + 10/24 = 19/24

Метод 3 из 4: Разложение каждого знаменателя на простые множители

  1. 1
    Разложите каждый знаменатель на простые множители. Напомним, что простые множители – числа, которые делятся только на 1 или самих себя.

  2. Пример: 1/4 + 1/5 + 1/12
  3. Простые множители 4: 2 * 2
  4. Простые множители 5: 5
  5. Простые множители 12: 2 * 2 * 3
  6. 2
    Подсчитайте число раз каждый простой множитель есть у каждого знаменателя.

  7. Пример: Есть две 2 для знаменателя 4; нуль 2 для 5; две 2 для 12
  8. Есть нуль 3 для 4 и 5; одна 3 для 12
  9. Есть нуль 5 для 4 и 12; одна 5 для 5
  10. 3
    Возьмите только наибольшее число раз (эти множители есть в любом знаменателе) для каждого простого множителя.

  11. Например: наибольшее число раз для множителя 2 — 2 раза; для 3 – 1 раз; для 5 – 1 раз.
  12. 4
    Запишите по порядку найденные в предыдущем шаге простые множители (с учетом наибольшего числа раз).

  13. Пример: 2, 2, 3, 5
  14. 5
    Перемножьте эти числа. Результат произведения этих чисел равно НОЗ.

  15. Пример: 2 * 2 * 3 * 5 = 60
  16. НОЗ = 60
  17. 6
    Перепишите исходное уравнение. Числители будут равны произведению на число, равное частному от деления НОЗ на соответствующий знаменатель.

  18. Пример: 60/4 = 15; 60/5 = 12; 60/12 = 5
  19. 15 * (1/4) = 15/60; 12 * (1/5) = 12/60; 5 * (1/12) = 5/60
  20. 15/60 + 12/60 + 5/60
  21. 7
    Решите.

  22. Пример: 15/60 + 12/60 + 5/60 = 32/60 = 8/15

Метод 4 из 4: Работа со смешанными числами

1
Преобразуйте каждое смешанное число в неправильную дробь. Для этого умножьте целую часть смешанного числа на знаменатель и сложите с числителем – это будет числитель неправильной дроби. Целое число тоже превратите в дробь (просто поставьте 1 в знаменателе).

Пример: 8 + 2 1/4 + 2/3
8 = 8/1
2 1/4, 2 * 4 + 1 = 8 + 1 = 9; 9/4

Переписанное уравнение: 8/1 + 9/4 + 2/3

2
Найти наименьший общий знаменатель. Вычислите НОЗ любым способом, описанным выше

Для этого примера мы будем использовать метод «перечисление кратных».

Обратите внимание, что вам не нужно перечислять кратные для 1, так как любое число, умноженное на 1, равно самому себе; иными словами, каждое число является кратным 1.
Пример: 4 * 1 = 4; 4 * 2 = 8; 4 * 3 = 12; 4 * 4 = 16; т.д.
3 * 1 = 3; 3 * 2 = 6; 3 * 3 = 9; 3 * 4 = 12; т.д.
НОЗ = 12

3
Перепишите исходное уравнение. Числители будут равны произведению на число, равное частному от деления НОЗ на соответствующий знаменатель.

Например: 12 * (8/1) = 96/12; 3 * (9/4) = 27/12; 4 * (2/3) = 8/12
96/12 + 27/12 + 8/12

4
Решите уравнение.

Пример: 96/12 + 27/12 + 8/12 = 131/12 = 10 11/12

Деление меньшего числа на большее. Продвинутый уровень.

В одном из предыдущих уроков мы сказали, что при делении меньшего числа на большее получается дробь, в числителе которой делимое, а в знаменателе – делитель.

Например, чтобы разделить одно яблоко на двоих, нужно в числитель записать 1 (одно яблоко), а в знаменатель записать 2 (двое друзей). В результате получим дробь . Значит каждому другу достанется по  яблока. Другими словами, по половине яблока. Дробь  это ответ к задаче «как разделить одно яблоко на двоих»

Оказывается, можно решать эту задачу и дальше, если разделить 1 на 2. Ведь дробная черта в любой дроби означает деление, а значит и в дроби  это деление разрешено. Но как? Мы ведь привыкли к тому, что делимое всегда больше делителя. А здесь наоборот, делимое меньше делителя.

Всё станет ясным, если вспомнить, что дробь означает дробление, деление, разделение. А значит и единица может быть раздроблена на сколько угодно частей, а не только на две части.

При разделении меньшего числа на большее получается десятичная дробь, в которой целая часть будет 0 (нулевой). Дробная часть же может быть любой.

Итак, разделим 1 на 2. Решим этот пример уголком:

Единицу на два просто так нацело не разделить. Если задать вопрос «сколько двоек в единице», то ответом будет 0. Поэтому в частном записываем 0 и ставим запятую:

Теперь как обычно умножаем частное на делитель, чтобы вытащить остаток:

Настал момент, когда единицу можно дробить на две части. Для этого справа от полученной единички дописываем ещё один ноль:

Получили 10. Делим 10 на 2, получаем 5. Записываем пятёрку в дробной части нашего ответа:

Теперь вытаскиваем последний остаток, чтобы завершить вычисление. Умножаем 5 на 2, получаем 10

Получили ответ 0,5. Значит дробь  равна 0,5

Половину яблока  можно записать и с помощью десятичной дроби 0,5. Если сложить эти две половинки (0,5 и 0,5), мы опять получим изначальное одно целое яблоко:

Этот момент также можно понять, если представить, как 1 см делится на две части. Если 1 сантиметр разделить на 2 части, то получится 0,5 см

Пример 2. Найти значение выражения 4 : 5

Сколько пятёрок в четвёрке? Нисколько. Записываем в частном 0 и ставим запятую:

Умножаем 0 на 5, получаем 0. Записываем ноль под четвёркой. Сразу же вычитаем этот ноль из делимого:

Теперь начнём дробить (делить) четвёрку на 5 частей. Для этого справа от 4 дописываем ноль и делим 40 на 5, получаем 8. Записываем восьмёрку в частном.

Завершаем пример, умножив 8 на 5, и получив 40:

Получили ответ 0,8. Значит значение выражения 4 : 5 равно 0,8

Пример 3. Найти значение выражения 5 : 125

Сколько чисел 125 в пятёрке? Нисколько. Записываем 0 в частном и ставим запятую:

Умножаем 0 на 125, получаем 0. Записываем 0 под пятёркой. Сразу же вычитаем из пятёрки 0

Теперь начнём дробить (делить) пятёрку на 125 частей. Для этого справа от этой пятёрки запишем ноль:

Делим 50 на 125. Сколько чисел 125 в числе 50? Нисколько. Значит в частном опять записываем 0

Умножаем 0 на 125, получаем 0. Записываем этот ноль под 50. Сразу же вычитаем 0 из 50

Теперь делим число 50 на 125 частей. Для этого справа от 50 запишем ещё один ноль:

Делим 500 на 125. Сколько чисел 125 в числе 500. В числе 500 четыре числа 125. Записываем четвёрку в частном:

Завершаем пример, умножив 4 на 125, и получив 500

Получили ответ 0,04. Значит значение выражения 5 : 125 равно 0,04

Нахождение дроби от числа

Мы уже говорили, что дробь это часть от чего-либо. Эта часть может быть чем угодно. Например,  от пиццы это половина пиццы:

Но применение дробей не заканчивается на одной пицце. Например, можно узнать сколько составляет  от десяти сантиметров:

Как вы уже догадались от десяти сантиметров составляют пять сантиметров. Ведь это простейшая дробь, которая означает половину от чего-то. У нас было десять сантиметров. Мы разделили эти десять сантиметров пополам и получили пять сантиметров.

Попробуем узнать, сколько составляет от одного часа. Вспоминаем, что час это 60 минут. Нам нужно найти  (половину) от 60 минут. Нетрудно догадаться, что половина от 60 минут это 30 минут. Значит  от одного часа составляет 30 минут или полчаса.

Попробуем найти от одного центнера. Центнер это 100 кг. Требуется найти (половину) от 100 кг. Нетрудно догадаться, что половина от 100 кг это 50 кг. Значит от одного центнера составляют 50 кг.

Поскольку мы занимаемся математикой, значит в большинстве случаев будем иметь дело с числами. Например, найдём  от числа 12.

Итак, нужно найти половину от числа 12. Нетрудно догадаться, что половиной от числа 12 является число 6. Значит  числа 12 составляет число 6.

Чтобы легче было находить дробь от числа, можно пользоваться следующим правилом:

Чтобы найти дробь от числа, нужно это число разделить на знаменатель дроби, и полученный результат умножить на числитель дроби.

Попробуем проследить весь процесс работы этого правила. Для примера возьмём десять сантиметров:

Пусть требуется найти  от этих десяти сантиметров. Читаем первую часть правила:

Чтобы найти дробь от числа, нужно это число разделить на знаменатель дроби 

Итак, делим десять сантиметров на знаменатель дроби . Знаменатель этой дроби равен числу 2. Поэтому делим десять сантиметров на 2

10 см : 2 = 5 см

Читаем вторую часть правила:

и полученный результат умножить на числитель дроби 

Итак, умножаем пять сантиметров на числитель дроби . Числитель дроби в данном случае единица. Поэтому умножаем пять сантиметров на единицу:

5 см × 1 = 5 см

Мы нашли от десяти сантиметров. Видим, что  от десяти сантиметров составляют пять сантиметров:

Почему же после деления числа на знаменатель дроби приходиться умножать полученный результат на числитель дроби? Дело в том, что знаменатель дроби показывает на сколько частей что-либо разделено, а числитель показывает сколько частей было взято.

В нашем примере десять сантиметров были разделены на две части (пополам), и из этих частей была взята одна часть. Умножая одну часть на числитель дроби, мы тем самым указываем сколько частей мы берём от чего-то. То есть умножив пять сантиметров на числитель дроби , мы тем самым указали, что берем одну часть из двух.

Пример 2. Найти  от 10 см.

Применим правило нахождения дроби от числа:

Чтобы найти дробь от числа, нужно это число разделить на знаменатель дроби, и полученный результат умножить на числитель дроби.

Сначала делим 10 сантиметров на знаменатель дроби

10 см : 5 = 2 см

Получили два сантиметра. Этот результат нужно умножить на числитель дроби 

2 см × 2 = 4 см

Мы нашли от десяти сантиметров. Видим, что  от десяти сантиметров составляют четыре сантиметра.

Весь процесс решения можно увидеть на следующем рисунке:

Сначала десять сантиметров были разделены на пять равных частей. Затем было взято две части из этих пяти частей:

Пример 3.  Найти  от числа 56.

Чтобы найти  от числа 56, нужно это число разделить на знаменатель дроби , и полученный результат умножить на числитель дроби .

Итак, сначала делим число 56 на знаменатель дроби

56 : 8 = 7

Теперь умножаем полученное результат на числитель дроби

7 × 3 = 21

Получили ответ 21. Значит  от числа 56 составляет 21.

Пример 4. Найти  от одного часа.

Один час это 60 минут. Задание можно понимать, как нахождение  от 60 минут.

Сначала разделим 60 минут на знаменатель дроби

60 мин : 4 = 15 мин

Теперь умножим полученные 15 минут на числитель дроби

15 мин × 2 = 30 мин

Получили в ответе 30 минут. Значит  от одного часа составляют тридцать минут или полчаса.

Пример 5. Найти  от одного метра.

Один метр это сто сантиметров. Сначала разделим 100 см на знаменатель дроби

100 см : 5 = 20 см

Теперь умножим полученные 20 см на числитель дроби

20 см × 4 = 80 см

Получили ответ 80 см. Значит  от одного метра составляют 80 см.

Сложение смешанных чисел

Встречаются задачи, в которых требуется сложить смешанные числа. Например, найти значение выражения . Чтобы решить этот пример, нужно целые и дробные части сложить по отдельности.

Для начала запишем смешанные числа в развёрнутом виде:

Применим сочетательный закон сложения. Сгруппируем целые и дробные части по отдельности:

Вычислим целые части: 2 + 3 = 5. В главном выражении заменяем выражение в скобках (2 + 3) на полученную пятёрку:

Теперь вычислим дробные части. Это сложение дробей с разными знаменателями. Как складывать такие дроби мы уже знаем:

Получили   . Теперь в главном выражении заменяем дробные части на полученную дробь

Теперь свернем полученное смешанное число:

Таким образом, значение выражения  равно . Попробуем изобразить это решение в виде рисунка. Если к двум целым и половине пиццы прибавить три целые и одну восьмую пиццы, то получится пять целых пицц и ещё пять восьмых пиццы:

Подобные примеры нужно решать быстро, не останавливаясь на подробностях. Находясь в школе, нам пришлось бы записать решение этого примера следующим образом:

Если в будущем увидите такое короткое решение, не пугайтесь. Вы уже понимаете, что откуда взялось.

Пример 2. Найти значение выражения

Запишем смешанные числа в развёрнутом виде:

Сгруппируем целые и дробные части по отдельности:

Вычислим целые части: 5 + 3 = 8. В главном выражении заменяем выражение в скобках (5 + 3) на полученное число 8

Теперь вычислим дробные части:

Получили смешанное число . Теперь в главном выражении заменяем выражение в скобках на полученное смешанное число 

Получили выражение . В данном случае число 8 надо прибавить к целой части смешанного числа  . Для этого смешанное число можно временно развернуть, чтобы было понятнее, что с чем складывать:

Сложим целые части. Получаем 9

Сворачиваем готовый ответ:

Таким образом, значение выражения  равно .

Полное решение этого примера выглядит следующим образом:

Для решения подобных примеров существует универсальное правило. Выглядит оно следующим образом:

Чтобы сложить смешанные числа, надо:

  • привести дробные части этих чисел к общему знаменателю;
  • отдельно выполнить сложение целых и дробных частей.

Если при сложении дробных частей получилась неправильная дробь, выделить целую часть в этой дроби и прибавить ее к полученной целой части.

Применение готовых правил допустимо в том случае, если суть темы полностью понятна. Решение по-шаблону, поглядывая в другие подобные примеры, приводит к ошибкам на обнаружение которых уходит дополнительное время. Поэтому, сначала разумнее понять тему, а затем пользоваться готовым правилом.

Пример 3. Найти значение выражения 

Воспользуемся готовым правилом. Приведём дробные части к общему знаменателю, затем по отдельности сложим целые и дробные части:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер по всему
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: