Алгебра

Формулировка признака делимости на 10, 100 и т.д. с примерами

Сначала запишем формулировку признака делимости на десять:

Определение 1

Если число заканчивается на , то его можно разделить на 10 без остатка, а если на любую другую цифру, то нельзя.

Теперь запишем признак делимости на 100:

Определение 2

На 100 без остатка можно разделить такое число, которое заканчивается двумя нулями. Если хотя бы одна из двух цифр в конце не равна нулю, то такое число разделить на 100 без остатка нельзя.

Точно так же можно вывести признаки делимости на тысячу, 10 тысяч и так далее: в зависимости от количества нулей в делителе нам требуется соответствующее количество нулей в конце числа.

Отметим, что данные признаки нельзя распространить на , поскольку можно разделить на любое целое число – и на сто, и на тысячу, и на десять тысяч.

Эти признаки легко применять в решении задач, ведь подсчитать количество нулей в исходном числе несложно. Возьмем несколько примеров применения данных правил на практике.

Пример 1

Условие: определите, какие числа из ряда 500, −1 010, −50 012, 440 000 300 000, 67 893 можно разделить на 10, 10 000 без остатка, а какие из них не делятся на 100.

Решение

Согласно признаку делимости на 10, мы можем совершить такое действие с тремя числами из указанных, а именно с −1 010, 440 000 300 000, 500, ведь они все заканчиваются нулями. А вот для −50 012 и 67 893 такого деления без остатка мы осуществить не можем, поскольку у них в конце стоят 2 и 3.

На 10 тысяч здесь можно разделить всего одно число – 440 000 300 000, поскольку лишь в нем достаточно нулей в конце (4). Зная признак делимости на 100, можно сказать, что −1 010, −50 012 и 67 893 на сотню не делятся, поскольку в конце у них нет двух нулей.

Ответ: на 10 можно разделить числа 500, −1 010, 440 000 300 000; на 10 000 – число 440 000 300 000; на 100 не делятся числа 1 010, −50 012 и 67 893.

Проверка результата деления целых чисел с остатком

После выполнение деления чисел с остатком необходимо выполнять проверку. Данная проверка подразумевает 2 этапа. Вначале идет проверка остатка d на неотрицательность, выполнение условия ≤d<b. При их выполнении разрешено выполнять 2 этап. Если 1 этап  не выполнился, значит вычисления произведены с ошибками. Второй этап состоит из того, что равенство a=b·c+d должно быть верным. Иначе в вычисления имеется ошибка.

Рассмотрим на примерах.

Пример 9

Произведено деление -521 на -12. Частное равно 44, остаток 7. Выполнить проверку.

Решение

Так как остаток – это число положительное, то его величина является меньше, чем модуль делителя. Делитель равен -12, значит, его модуль равен 12. Можно переходить к следующему пункту проверки.

По условию имеем, что a=−521, b=−12, c=44, d=7. Отсюда вычислим b·c+d, где b·c+d=−12·44+7=−528+7=−521. Отсюда следует, что равенство верное. Проверка пройдена.

Пример 10

Выполнить проверку деления (−17)5=−3 (ост. −2). Верно ли равенство?

Решение

Смысл первого этапа заключается в том, что необходимо проверить деление целых чисел с остатком. Отсюда видно, что действие произведено неверно, так как дан остаток, равный -2. Остаток не является отрицательным числом.

Имеем, что второе условие выполненное, но недостаточное для данного случая.

Ответ: нет.

Пример 11

Число -19 разделили на -3. Неполное частное равно 7, а остаток 1. Проверить, верно ли выполнено данное вычисление.

Решение

Дан остаток, равный 1. Он положительный. По величине меньше модуля делителя, значит, первый этап выполняется. Перейдем ко второму этапу.

Вычислим значение выражения b·c+d. По условию имеем, что b=−3, c=7, d=1, значит, подставив числовые значения, получим b·c+d=−3·7+1=−21+1=−20.  Следует, что a=b·c+d равенство не выполняется, так как в условии дано а=-19.

Отсюда следует вывод, что деление произведено с ошибкой.

Ответ: нет.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Делители от 11 и выше

Чтобы получилось деление на 11, необходимо сложить четные по счету номера, а затем нечетные, затем произвести вычитание. Если в процессе вычислений получился ноль или одиннадцать, то остатка не будет.

Онлайн-задание с ответом: 7535, 74019 и 50486.

Нечетные в первом случае 7 и 3, четные 5 и 5. Считаем:

  • 7+3=10,
  • 5+5=10,
  • 10−10=0.

Четные во втором примере 4 и 1, нечетные — 7, 0, 9. Вычисление:

  • 7+0+9=16.
  • 4+1=5.
  • 16−5=11.

В третьем примере нечетные 5, 4, 6, четные 0 и 8. Решаем:

  • 5+4+6=15.
  • 0+8=8.
  • 15−8=7.

Ответ: в первом и втором примере десятых, сотых, тысячных и так далее не останется, а в третьем — останется.

Чтобы разделить на двузначный делитель 12, нужно произвести общие вычисления, характерные для делителей 3 и 4 одновременно. К примеру, 900 и 3432. Сначала следует разложить на слагаемые 9+0+0=9, значит, можно поделить на 3. В конце стоит два нуля — можно делить на 4. Проверка: 900:12=75. Первая часть задания решена, теперь делаем вторую: 3+4+3+2=12, 12:3=4. Таким образом проверяется кратность трем. Теперь четырем: в конце стоит 32, что указывает на кратность 4, значит, остатка не будет. Таким образом, оба примера кратны 12.

Дробь, кратная 13, разрешится без остатка, если последнюю цифру умножить на 4, после чего сложить число и последнюю цифру. Если полученная сумма кратна 13 или равно 0, то деление получится.

Например, 6942:

  • 2*4=8.
  • 694+8=702.
  • 702:13=54.

Еще пример — 754:

  • 4*4=16.
  • 75+16=91.
  • 91:13=7.

Деление на числа, заканчивающиеся нулями

Как и в случае с
умножением, деление чисел облегчается, если делитель заканчивается одним или
несколькими нулями. Рассмотрим два возможных случая:

  • частный – когда делитель является единицей с нулями
  • общий – когда делитель любое число, оканчивающееся нулями.

Рассмотрим первый случай.

Деление на единицу с любым количеством
нулей

Единица с любым количеством нулей – это не что иное как единица соответствующего разряда. Например, 10 – это 1 единица разряда десятков, 1000 – это одна единица разряда тысяч, 10000000 – 1 единица разряда десятков миллионов и т.д.

Следовательно, разделить число, к примеру, на 10, 1000, 10000000 и т.д. – это значит определить, сколько в нем содержится десятков, тысяч, десятков миллионов. А как узнать, сколько в каком-либо числе содержится единиц любого разряда я уже рассказывал в уроке разряды и классы. Для завершения действия деления нужно лишь записать в остаток число, которое получается из отбрасываемых нами цифр.

Например:

\(\textcolor{red} {75427916\div 10=7542791}\) (остаток 6); \(\textcolor{red} {75427916\div 1000=75427}\) (остаток 916); \(\textcolor{red} {75427916\div 10000000=7}\) (остаток 5427916).

Запишите:Чтобы разделить какое-нибудь число на единицу с любым количеством нулей, нужно отсчитать в делимом справа столько цифр, сколько нулей содержится в делителе; тогда все цифры, находящиеся слева от разделения, составят частное, а те, что справа – будут остатком.

Деление на число, оканчивающееся нулями

Рассмотрим на примере \(\textcolor{red} {284556\div 2800}\).

Делитель здесь не что иное как 28 сотен. Логично предположить, что эти 28 сотен могут хотя бы один раз содержаться только в сотнях делимого. Значит, нам нужно определить, сколько в делимом всего единиц разряда сотен, и разделить их на 28 единиц разряда сотен делимого. А отброшенные цифры десятков и простых единиц добавятся к остатку.

В числе 284556 всего 2845 сотен да еще 56 единиц. Разделим 2845 сотен на 28 сотен, получим частное 101 и 17 сотен неразделенными. Прибавив к неразделенным 17 сотням 56 единиц из делимого, получим 1756. В этом числе делитель 2800 не помещается ни один раз, значит, 1756 – это остаток: \(\textcolor{red} {284556\div 2800=101}\) (остаток 1756).

Запишите:Чтобы разделить какое-нибудь число на число, заканчивающееся нулями, нужно отбросить мысленно нули в делителе, в делимом тоже отбросить мысленно такое же количество цифр, как и нулей в делителе. Получившееся число в делимом разделить на получившееся число в делителе, а к остатку прибавить (снести) те цифры делимого, которые отбросили ранее.

Понятие делимости

Понятие делимости – это одно из основных понятий арифметики и теории чисел. Мы будем говорить о делимости целых чисел и в частных случаях — о делимости натуральных чисел. Итак, дадим представление о делимости на множестве целых чисел.

Целое число a делится на целое число b, которое отлично от нуля, если существует такое целое число (обозначим его q), что справедливо равенство a=b·q. В этом случае также говорят, что b делит a. При этом целое число b называется делителем числа a, целое число a называется кратным числа b (для получения более детальной информации о делителях и кратных обращайтесь к статье делители и кратные), а целое число q называют частным.

Если целое число a делится на целое число b в указанном выше смысле, то можно сказать, что a делится на b нацело. Слово «нацело» в этом случае дополнительно подчеркивает, что частное от деления целого числа a на целое число b является целым числом.

В некоторых случаях для данных целых чисел a и b не существует такого целого числа q, при котором справедливо равенство a=b·q. В таких случаях говорят, что целое число a не делится на целое число b (при этом имеется в виду, что a не делится на b нацело). Однако в этих случаях прибегают к делению целых чисел с остатком.

Разберемся с понятием делимости на примерах.

−81 делится на целое отрицательное число −27, так как −81=(−27)·3 (равенство (−27)·3=−81 имеет место в силу ). Здесь же можно сказать, что число −27 делит −81. В этом примере целое число −81 – это кратное числа −27, а число −27 – делитель числа −81.

Рассмотрим еще один пример. Целое число −16 не делится на целое число 5, так как не существует такого целого числа q, при котором справедливо равенство −16=5·q. Таким образом, число −16 не является кратным числа 5, а число 5 не является делителем числа −16.

Теперь введем обозначения, принятые для удобства описания делимости.

Тот факт, что целое число a является кратным целого числа b (a кратно b, или a делится на b), записывают с помощью символа, представляющего собой три расположенные по вертикали точки «», в виде ab. Например, запись 9729 означает, что целое положительное число 972 делится на 9.

С другой стороны, то обстоятельство, что целое число b делит целое число a, записывают с использованием символа «|», имеющего вид вертикальной черты, следующим образом: b|a. К примеру, запись 3|27 означает, что число 3 делит 27. Также можно встретить записи вида b\a (посмотрите на обыкновенную дробь a/b справа налево), которые являются лишь разновидностью записи b|a и означают то же самое (что b делит a).

Если символы делится и делит | зачеркнуть, то получим символы вида и , которые означают не делится (не является кратным, не кратно) и не делит соответственно. Приведем примеры. Запись 457 утверждает, что 45 не делится на 7 (45 не является кратным числа 7, 45 не кратно 7). Целое число −3 не делит целое число 11, кратко можно записать (−3)11.

Итак, записи ab и b|a по сути являются различными формами записи одного и того же факта — делимости целого числа a на целое число b, а записи вида ab и ba опровергают делимость a на b.

Как определить количество делителей конкретного числа

Чтобы узнать, сколько положительных делителей у конкретного числа a, каноническое разложение которого выглядит как a=p1s1·p2s2·…·pnsn, нужно найти значение выражения (s1+1) ·(s2+1) ·…·(sn+1). О количестве наборов переменных t1, t2, …, tn мы можем судить по величине записанного выражения.

Покажем на примере, как это вычисляется. Определим, сколько будет натуральных делителей у числа 3 900, которое мы использовали в предыдущей задаче. Каноническое разложение мы уже записывали: 3 900=22·3·52·13. Значит, s1=2, s2=1, s3=2, s4=1. Теперь подставим значения s1, s2, s3 и s4 в выражение (s1+1) ·(s2+1) ·(s3+1) ·(s4+1) и вычислим его значение. Имеем (2+1)·(1+1)·(2+1)·(1+1)=3·2·3·2=36. Значит, это число имеет всего 36 делителей, являющихся натуральными числами. Пересчитаем то количество, что у нас получилось в предыдущей задаче, и убедимся в правильности решения. Если учесть и отрицательные делители, которых столько же, сколько и положительных, то получится, что у данного числа всего будет 72 делителя.

Пример 4

Условие: определите, сколько делителей имеет 84.

Решение 

Раскладываем число на множители.

844221712237

Записываем каноническое разложение: 84=22·3·7. Определяем, сколько у нас получится положительных делителей: (2+1)·(1+1)·(1+1) =12. Для учета отрицательных нужно умножить это число на 22·12=24.

Ответ: всего у 84 будет 24 делителя – 12 положительных и 12 отрицательных.

Проверка деления

Так как делимое – это
делитель, умноженный на частное и плюс остаток, что следует из определения
деления, то результат выполнения деления можно проверить умножением.

Например:

После того, как мы умножили частное 241 на делитель 33, а к полученному произведению прибавили остаток 9, мы получили число 7962, что равно делимому. Значит, можно с большой уверенностью сказать, что действие деление выполнено верно.

Если в результате
действия деления не получилось остатка, то деление можно проверить и делением.
Действительно, если делимое – это произведение делителя и частного, то разделив
делимое на частное (один из сомножителей), мы должны получить второй
сомножитель, то есть, делитель.

 Например:

Что такое делитель?

Мы знаем, что делитель это число, показывающее на сколько частей нужно разделить делимое. Например, в выражении 8 : 2 = 4, делителем является число 2. Это число показывает на сколько частей нужно разделить число 8. После разделения получается ответ 4. Как видно из примера, число 8 делится на число 2 без остатка. Говорят, что число 2 является делителем числа 8.

Пример 1. Число 2 является делителем числа 8, поскольку 8 делится на 2 без остатка:

8 : 2 = 4

Пример 2. Число 3 является делителем числа 9, поскольку 9 делится на 3 без остатка:

9 : 3 = 3

Пример 3. Число 4 не является делителем числа 10 поскольку 10 не делится на 4 без остатка:

10 : 4 = 2 (2 в остатке)

Определение. Делителем числа а называется число, на которое число а делится без остатка.

Данное определение содержит переменную a. Подставим вместо этой переменной любое число, например число 12 и прочитаем определение:

Делителем числа 12 называется число, на которое 12 делится без остатка.

Попробуем перечислить эти числа:

1, 2, 3, 4, 6, 12

Все эти числа являются делителями числа 12, поскольку число 12 делится на них без остатка. Покажем это:

12 : 1 = 1212 : 2 = 612 : 3 = 412 : 4 = 312 : 6 = 212 : 12 = 1

Способ 2: уменьшение количества петлевых итераций

Мы используем два наблюдения для уменьшения количества петлевых итераций «наивного алгоритма».

Наблюдение 1: Если номер это делитель , номер должен быть целым числом и делитель а также потому, что Отказ Это означает, что каждый раз мы находим делитель , мы также можем добавить дивизор к списку делителей.

Наблюдение 2: Для пары -дивизор Один из них должен быть меньше или равен квадратному корню Отказ Причина проста: если оба были больше квадратного корня, умножение будет больше, чем наверняка, потому что Отказ Таким образом, мы можем пройти потенциальные делители от к И обязательно нашли все делители. Это экономит нам все итерации от к Отказ

Вот простой твик со значительными преимуществами производительности:

def divisors(n):
    result = set()
    for i in range(1, int(n**0.5)+1):
        if n % i == 0:
            result.add(i)
            result.add(n//i)
    return list(result)

print(divisors(24))
# 

Этот код илетет только от 0 до квадратного корня числа Отказ Если мы найдем делитель мы также добавляем который является другим фактором и делитель также.

Сложность выполнения: Сложность выполнения вычисления делителей числа N это O (n ^ 0,5) Используя этот подход, предполагающий, что операция по модулю учитывается как один шаг.

Деление целых положительных чисел

Целыми положительными числами называют натуральные числа, поэтому деление целых положительных чисел производится, исходя из правил деления натуральных чисел. Рассмотрим несколько примеров для детального просмотра деления целых положительных чисел.

Пример 1

Произвести деление целого положительного 104 на целое положительное 8.

Решение

Для упрощения процесса деления можно представить число 104 в виде суммы 80+24,теперь необходимо применить правило деления суммы на данное число. Получим 1048=(80+24)8=808+248=10+3=13.

Ответ: 1048=13.

Пример 2

Найти частное от деления 308 716452.

Решение

Когда имеем большое число, деление лучше всего производить в столбик:

Ответ: 308 716452=683.

Правило деления целых чисел с разными знаками, примеры

Выделим правило деления целых чисел, содержащих разные знаки.

Если делим целое числа a и b с разными знаками, то получаем число с.  Необходимо определить знак получаемого числа. Следует записать c=ab.

Чтобы определить смысл деления равенства b·c=a, необходимо рассмотреть два варианта. Предположительно существует вариант, когда а – отрицательное, b – положительное или а – положительное, а b – отрициательное. Любой из случаев в итоге имеет отрицательный результат. Следуя из правил умножения, имеем, что b и с отрицательные, тогда произведение будет являться положительным. Если b положительное, с – отрицательное, тогда произведение является отрицательным числом.

Для формулировки применимо правило деления целых чисел с разными знаками. Отсюда получим: чтобы разделить целые числа с разными знаками, необходимо разделить делимое на делитель по модулю, перед полученным результатом поставить «-». Получаем, что a и b являются целыми числами с разными знаками. Это запишем, как ab=-ab.

Детально разберем примеры, где необходимо применить правило деления целых чисел с разными знаками.

Пример 5

Разделить 56 на -4.

Решение

Исходя из правила, имеем, что 56 необходимо разделить на 4 по модулю. Значит, получим, что 564=14. Для определения знака результата необходимо посмотреть наличие «-» перед делителем и делимым. Если имеется только один знак минуса, то результат запишем как отрицательное значение. То есть, -14.

Ответ:56(−4)=−14.

Пример 5

Выполнить деление -1625 на 25.

Решение

Данный пример показывает правильное деление целых чисел с разными знаками. Для этого необходимо применить правило 

-162525=—162525=-162525=-65

Деление числа 1625 можно производить в столбик или с помощью представления его в виде суммы 1500+125, применив правило деления полученной суммы на число.

Ответ: (−1 625)25=−65.

Деление с остатком и неполное частное

Но не всегда можно одно число разделить на другое. Вернее сказать, что не всегда можно сделать это полностью. Например, 37 нельзя разделить на 5, потому что нет такого натурального числа, умножив которое на 5, мы получили бы 37. В этом случае говорят, что 37 не делится нацело на 5.

К примеру, если мы захотим раздать все 37 яблок поровну между пятью детьми, то у нас это сделать не получится. Мы сможем раздать (использовать из всего количества яблок) только по 7 яблок каждому ( \(\textcolor{red} {7\cdot 5=35}\) ), и у нас останется 2 яблока ( \(\textcolor{red} {37-35=2}\) ).

В таком случае действие деление также состоит из делимого (в нашем случае 37) и делителя (5). Полученное число 7 называется неполное частное, потому что не все делимое число мы смогли разделить на необходимое число частей. А разница между полным делимым (37) и использованными из него единицами (35), то есть число 2, называется остаток.

Итак, деление с остатком – это нахождение
такого наибольшего целого числа, умножив которое на делитель, мы получим число,
максимально близкое к делимому, но не превосходящее его. Это искомое число
называется неполное частное. Разница
между делимым и неполным частным называется остаток.

Остаток всегда меньше делителя!

Отсюда следует общий вид действия деления натуральных чисел для случаев деления без остатка и с остатком.Разделить целое число a (делимое) на целое число b (делитель) означает найти такие числа c и d, при которых справедливы следующие соотношения: \(\textcolor{red} {a=b\cdot c+d}\) ; \(\textcolor{red} {d<b}\) .Если \(\textcolor{red} {d=0}\) , тогда говорят, что a делится на b без остатка.

Компоненты действия
деление с остатком:

Прочие случаи делимости на 1000, 100, 10 и др.

В данном пункте мы расскажем о других способах определения делимости на 10. Так, если изначально у нас задано не число, а буквенное выражение, то воспользоваться указанными выше признаками мы не можем. Здесь нужно применить другие методы решения.

Первым таким методом является использование формулы бинома Ньютона. Решим такую задачу.

Пример 2

Условие: определите, можно ли разделить 11n+20n-21 на 10 при любом натуральном значении n.

Решение

Cначала представим 11 как сумму 10 и единицы, а потом воспользуемся нужной формулой.

11n+20n-21=(10+1)n+20n-21==Cn·10n+Cn1·10n-1·1+…+Cnn-2·102·10n-2+Cnn-1·10·1n-1+Cnn·1n++20n-21==10n+Cn1·10n-1·1+…+Cnn-2·102·n·10+1++20n-21==10n+Cn1·10n-1·1+…+Cnn-2·102+30n-20==10·10n-1+Cn1·10n-2+…+Cnn-2·101+3n-2

Мы получили выражение, которое можно разделить на 10,поскольку там есть соответствующий множитель. Значение выражения в скобках будет представлять из себя натуральное число при любом натуральном значении n. Значит, исходное выражение 11n+20n-21 можно разделить на десять при любом натуральном n.

Ответ: данное выражение делится на 10.

Еще один метод, который возможно применить в данном случае, – математическая индукция. Покажем на примере задачи, как это делается.

Пример 3

Условие: выясните, будет ли 11n+20n-21 делится на 10 при любом натуральном n.

Решение

Применим метод математической индукции. Если n будет равен единице, то у нас получится 11n+20n-21=111+20·1-21=10. Деление десяти на десять возможно.

Допустим, что выражение 11n+20n-21 будет делиться на 10 при n=k, то есть 11k+20k-21 можно разделить на 10.

Учитывая предположение, сделанное ранее, попробуем доказать, что выражение 11n+20n-21 делится на 10 при n=k+1. Для этого нам нужно преобразовать его следующим образом:

11k+1+20·k+1-21=11·11k+20k-1=11·11k+20k-21-200k+230==11·11k+20k-21-10·20k-23

Выражение 11·11k+20k-21 в данной разности можно разделить на 10, поскольку такое деление возможно и для 11k+20k-21, а 10·20k-23 тоже делится на 10, потому что это выражение содержит множитель 10. Из этого мы можем заключить, что на 10 делится вся разность. Это и будет доказательством того, что 11n+20n-21 делится на 10 при любом натуральном значении n.

Если нам нужно проверить, делится ли на 10 многочлен с переменной n, допускается следующий подход: доказываем, что при n=10·m, n=10·m+1, …, n=10·m+9, где m – целое число, значение исходного выражения можно разделить на 10. Это докажет нам делимость такого выражения при любом целом n. Несколько примеров доказательств, где используется такой способ, можно найти в статье о других случаях делимости на три.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Признаки делимости суммы и разности чисел

  1. Если каждое слагаемое делится на некоторое число, то и вся сумма делится на это число, т. е., если a делится на b и c делится на b, то (a+c) делится на b.
  2. Если одно слагаемое делится на некоторое число, а другое слагаемое не делится на это число, то и вся сумма не делится на это число, т. е., если a делится на b, а c не делится на b, то (a + c) не делится на b.
  3. Если одно слагаемое делится на некоторое число и сумма делится на это же число, то другое слагаемое тоже делится на это число, т. е., если a делится на b и (a + c) делится на b, то c делится на b.
  4. Если одно число делится на некоторое другое число, которое делится на третье число, то первое число делится на третье число, т. е., если a делится на c и c делится на b, то a делится на b.
  5. Если и уменьшаемое, и вычитаемое делятся на некоторое число, то и разность делится на это число.

Операции по модулю

Выражение \(a \equiv b \pmod m\) означает, что остатки от деления \(a\) на \(m\) и \(b\) на \(m\) равны. Это выражение читается как «\(a\) сравнимо \(b\) по модулю \(m\)».

Еще это можно опрделить так: \(a\) сравнимо c \(b\) по модулю \(m\), если \((a — b)\) делится на \(m\).

Все целые числа можно разделить на классы эквивалентности — два числа лежат в одном классе, если они сравнимы по модулю \(m\). Говорят, что мы работаем в «кольце остатков по модулю \(m\)», и в нем ровно \(m\) элементов: \(0, 1, 2, \cdots, m-1\).

Сложение, вычитение и умножение по модулю определяются довольно интуитивно — нужно выполнить соответствующую операцию и взять остаток от деления.

С делением намного сложнее — поделить и взять по модулю не работает. Об этом подробнее поговорим чуть дальше.

Задание

Посчитайте: * \(2 + 3 \pmod 5\) * \(2 * 3 \pmod 5\) * \(2 ^ 3 \pmod 5\) * \(2 — 4 \pmod 5\) * \(5 + 5 \pmod 6\) * \(2 * 3 \pmod 6\) * \(3 * 3 \pmod 6\)

Для умножения (в C++) нужно ещё учитывать следующий факт: при переполнении типа всё ломается (разве что если вы используете в качестве модуля степень двойки).

  • вмещает до \(2^{31} — 1 \approx 2 \cdot 10^9\).
  • вмещает до \(2^{63} — 1 \approx 8 \cdot 10^{18}\).
  • в плюсах нет, при попытке заиспользовать выдает ошибку .
  • Под некоторыми компиляторами и архитектурами доступен , но не везде и не все функции его поддерживают (например, его нельзя вывести обычными методами).

Зачем нужно считать ответ по модулю

Очень часто в задаче нужно научиться считать число, которое в худшем случае гораздо больше, чем \(10^{18}\). Тогда, чтобы не заставлять вас писать длинную арифметику, автор задачи часто просит найти ответ по модулю большого числа, обычно \(10^9 + 7\)

Кстати, вместо того, чтобы писать \(1000000007\) удобно просто написать \(1e9 + 7\). \(1e9\) означает \(1 \times 10^9\)

Заключение

Как мы видим, в этой области теории чисел существует очень много пробелов, а также недоказанных гипотез. Отдельно хочется сказать про численную проверку утверждений. Например, ни для одной из гипотез Ландау не был найден контрпример, даже с использованием значительных вычислительных мощностей в течение большого времени. Однако, в истории математики 20-го и 21-го века были случаи, когда контрпример, опровергающий гипотезу, был настолько огромным числом, что его не удавалось найти с помощью вычислительных машин.

Также, постоянный интерес к простым числам обусловлен их обширным применением в криптографии. Итак, как мы убедились, исследование простых чисел — это, действительно, важная и очень интересная задача.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер по всему
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: