Площадь четырехугольника

Комната сложной конфигурации

Нередко встречаются комнаты необычной формы. Если есть возможность, то нужно разделить помещение на несколько прямоугольников, посчитать площадь каждого и сложить.

Площадь комнаты в форме круга вычисляется по формуле:

S комнаты = πR², где R – радиус. Необходимо учитывать, сколько градусов в секторе.

Для расчета площади комнаты треугольной формы используют формулу Герона:

Sкомнаты = √ (P(P -A) х (Р — В) х (Р — С)), где Р – половина периметра треугольника, А, В, С – длины его сторон.

Полупериметр треугольника рассчитываем так: Р = (А + В + С) / 2

Комната со сложной конфигурацией стен. Фото — welovead.com

Площадь ромба

В геометрии ромбом является четырехугольник, все стороны которого одинаковы. По сути дела, он является параллелограммом, а частным случаем ромба является квадрат.

Нахождение площади ромба

  • Площадь ромба можно вычислить по следующей формуле:
  • S = a2sinα = a2sinβ
  • a – сторона ромба
  • D – большая диагональ
  • d – меньшая диагональ
  • α – острый угол
  • β – тупой угол
  • S – площадь ромба

Эти фигуры в их «классической» форме в окружающей нас действительности, архитектуре и технике встречаются не так уж и часто, однако некоторые, наиболее яркие примеры, привести все же можно.

Чаще всего с ромбами имеют дело специалисты, занимающиеся обработкой металлов резанием. Дело в том, что их форму имеют пластины, являющиеся съемными деталями резцов и изготавливаемые из твердых сплавов с добавлением различных легирующих элементов.

В отличие от тех частей, которые просто припаиваются к державкам режущего инструмента, они не подлежат заточке с помощью абразивного инструмента, а после того, как затупляются, их просто заменят новыми.

В центрах таких ромбовидных пластин расположено отверстие, которым они насаживаются на специальные оси в корпусах резцов, а окончательная фиксация происходит при помощи специальных клиньев, крепящихся резьбовыми соединениями.

Такая конструкция позволяет производить замену твердосплавных ромбовидных пластин очень быстро и не терять время на заточку режущего инструмента. После использования, эти элементы достаточно просто утилизируются: они переплавляются и из этого же металла изготавливаются новые.

В последние годы для устройства тротуаров все чаще используется не асфальт, а красивая, прочная и практичная тротуарная плитка ромбовидной формы.

Она изготавливается на специальном оборудовании, укладывается довольно быстро, а в случае, если требуется произвести ремонт или замену подземных коммуникаций, ее можно без труда и повреждений снять, а затем, по окончании работ, установить на место.

В архитектуре нередко можно встретить окна зданий ромбовидной формы, которые считаются дизайнерскими и выглядят весьма стильно. Изготавливаются они в ограниченных количествах и чаще всего на заказ, для обеспечения текущих потребностей при возведении тех или иных объектов. Следует заметить, что стоят они существенно дороже, чем стандартные прямоугольные, зато и выглядят намного эффектнее.

Такие геометрические элементы, как ромбы, нередко являются частями различных геральдических элементов (например, гербов). Примечательно, что в культуре, традициях и верованиях различных народов он является символом женского начала, счастья и благополучного положения дел в государстве. Формы ромба имеют нагрудные знаки выпускников многих ВУЗов и военных училищ.

Формулы для площадей четырехугольников

Четырехугольник Рисунок Формула площади Обозначения
S = ab

a и b – смежные стороны

d – диагональ,φ – любой из четырёх углов между

S = 2R2 sin φ

Получается из верхней формулы подстановкой d=2R

R – радиус ,φ – любой из четырёх углов между

S = a ha

a – сторона,ha – , опущенная на эту сторону

S = absin φ

a и b – смежные стороны,φ – угол между ними

d1, d2 – ,

φ – любой из четырёх углов между ними

S = a2

a – сторона квадрата

S = 4r2

r – радиус

d – квадрата

S = 2R2

Получается из верхней формулы подстановкой d = 2R

R – радиус

S = a ha

a – сторона,ha – , опущенная на эту сторону

S = a2 sin φ

a – сторона,φ – любой из четырёх углов ромба

d1, d2 – 

S = 2ar

a – сторона,r – радиус

r – радиус ,φ – любой из четырёх углов ромба

a и b – основания,h – 

S = m h

m – ,h – 

d1, d2 – ,

φ – любой из четырёх углов между ними

a и b – основания,c и d  – боковые стороны

S = ab sin φ

a и b – неравные стороны,φ – угол между ними

a и b – неравные стороны,φ1 – угол между сторонами, равными a ,φ2 – угол между сторонами, равными b.

S = (a + b) r

a и b – неравные стороны,r – радиус

d1, d2 – 

Произвольный выпуклый четырёхугольник

d1, d2 – ,

φ – любой из четырёх углов между ними

,

a, b, c, d – длины сторон четырёхугольника,p – ,

Формулу называют «Формула Брахмагупты»

S = ab

гдеa и b – смежные стороны

гдеd – диагональ,φ – любой из четырёх углов между

S = 2R2 sin φ

гдеR – радиус ,φ – любой из четырёх углов между

Формула получается из верхней формулы подстановкой d = 2R

S = a ha

гдеa – сторона,ha – , опущенная на эту сторону

S = absin φ

гдеa и b – смежные стороны,φ – угол между ними

гдеd1, d2 – ,

φ – любой из четырёх углов между ними

S = a2

гдеa – сторона квадрата

S = 4r2

гдеr – радиус

гдеd – квадрата

S = 2R2

гдеR – радиус

Получается из верхней формулы подстановкой d = 2R

S = a ha

гдеa – сторона,ha – , опущенная на эту сторону

S = a2 sin φ

гдеa – сторона,φ – любой из четырёх углов ромба

гдеd1, d2 – 

S = 2ar

гдеa – сторона,r – радиус

гдеr – радиус ,φ – любой из четырёх углов ромба

гдеa и b – основания,h – 

S = m h

гдеm – ,h – 

гдеd1, d2 – ,

φ – любой из четырёх углов между ними

гдеa и b – основания,c и d  – боковые стороны

S = ab sin φ

гдеa и b – неравные стороны,φ – угол между ними

гдеa и b – неравные стороны,φ1 – угол между сторонами, равными a ,φ2 – угол между сторонами, равными b.

S = (a + b) r

гдеa и b – неравные стороны,r – радиус

гдеd1, d2 – 

Произвольный выпуклый четырёхугольник

гдеd1, d2 – ,

φ – любой из четырёх углов между ними

,

гдеa, b, c, d – длины сторон четырёхугольника,p –

Формулу называют «Формула Брахмагупты»

S = ab

гдеa и b – смежные стороны

гдеd – диагональ,φ – любой из четырёх углов между

S = 2R2 sin φ

гдеR – радиус ,φ – любой из четырёх углов между

Формула получается из верхней формулы подстановкой d = 2R

S = a ha

гдеa – сторона,ha – , опущенная на эту сторону

S = absin φ

гдеa и b – смежные стороны,φ – угол между ними

гдеd1, d2 – ,

φ – любой из четырёх углов между ними

S = a2

гдеa – сторона квадрата

S = 4r2

гдеr – радиус

гдеd – квадрата

S = 2R2

гдеR – радиус

Получается из верхней формулы подстановкой d = 2R

S = a ha

гдеa – сторона,ha – , опущенная на эту сторону

S = a2 sin φ

гдеa – сторона,φ – любой из четырёх углов ромба

гдеd1, d2 – 

S = 2ar

гдеa – сторона,r – радиус

гдеr – радиус ,φ – любой из четырёх углов ромба

гдеa и b – основания,h – 

S = m h

гдеm – ,h – 

гдеd1, d2 – ,

φ – любой из четырёх углов между ними

гдеa и b – основания,c и d  – боковые стороны,

S = ab sin φ

гдеa и b – неравные стороны,φ – угол между ними

гдеa и b – неравные стороны,φ1 – угол между сторонами, равными a ,φ2 – угол между сторонами, равными b.

S = (a + b) r

гдеa и b – неравные стороны,r – радиус

гдеd1, d2 – 

Произвольный выпуклый четырёхугольник

гдеd1, d2 – ,

φ – любой из четырёх углов между ними

гдеa, b, c, d – длины сторон четырёхугольника,p –

Формулу называют «Формула Брахмагупты»

Как вычислить площадь ромба?

Итак, давайте выясним, как вычисляется площадь ромба. Давайте воспользуемся для этого формулой площади прямоугольника, где:

S = a • b, где a, b – стороны прямоугольника.

Чтобы было понятно, как вывести из этой формулы, формулу площади ромба, смотрите объяснение:

  1. Нарисуйте ромб, проведите высоту к основанию ромба BH.
  2. Из точки D на линию AD проведите тоже высоту CH1.
  3. Выходит что треугольник ABH и треугольник CH1D между собой равны по двум общим сторонам, ∠ углу между ними.
  4. Значит AH=DH1. Площадь образовавшегося квадрата будет равна площади ромба
  5. А значит BH • HH1 – это и есть площадь ромба, другими словами произведение высоты BH ромба на сторону AD и будет S площадью ромба, поскольку HH1 = BC, а BH – это высота.


Высота ромба

Из доказательства вытекает, что:

S ромба = a • h и измеряется в квадратных единицах.

Как вычислять площадь ромба, зная его диагонали?

Чтобы узнать формулу площади ромба, когда известны только (a, b) диагонали, следует рассмотреть следующий пример. Дано BCDA – ромб и знаем чему равны диагонали. Теперь следует найти S площадь равностороннего параллелограмма по величинам диагоналей.

Ранее уже рассматривали свойства ромба. Диагонали ромба равны, в точке пересечения делятся на равные отрезки. Из этого следует, что все треугольники, которые вписаны в фигуру в результате пересечения обеих диагоналей тоже равны между собой и они прямоугольные (по трем сторонам). Чтобы найти площадь ромба, достаточно найти площадь одного треугольника и полученные данные умножить на 4.

Итого выходит, что:

S ромба = 4 (1/2 AO • OB + 1/2 BO • OC + 1/2 OC • OD + 1/2 OD • AO) = 4 • 1/8 AC • BD = 1/2 BD • AC, итого площадь S ромба будет = произведению a • b (диагоналей) деленное на два: S = 1/2 a • b


Площадь фигуры

Какими свойствами обладает эта геометрическая фигура

Чтобы найти площадь ромба, в первую очередь нужно знать, какими особенностями обладает данная геометрическая фигура.

  • Как уже было сказано в определении ромба, он является четырехугольником. А по той причине, что его противоположные стороны попарно являются параллельными между собою, ромб также может именоваться параллелограммом, а значит, на него распространяется большинство свойств этой фигуры.
  • Обе диагонали ромба в точке своего пересечения равномерно делятся надвое. А из-за того, что пересекаются они под углом в девяносто градусов, диагонали делят фигуру на 4 треугольника прямоугольных.
  • В любом ромбе диагонали делят его углы надвое, являясь одновременно их биссектрисами.
  • Если каждую из двух диагоналей ромба возвести в степень квадрата, то их сумма будет равна произведению квадрата стороны этой фигуры и числа четыре.
  • Если соединить линиями средины четырех сторон ромба, полученная фигура окажется прямоугольником.
  • Если в ромб (независимо от его углов) вписана окружность, тогда ее центральная точка совпадет с центром пересечения диагоналей.
  • Диагонали в ромбе соприкасаются с осями его симметрии под углами девяносто градусов.
  • Поскольку все стороны ромба идентичны между собою по длине, его периметр вычисляется по формуле Р=4 х К (К — это длинна одной из сторон).

Как найти площадь четырехугольника – параллелограмма

Если выпуклый многоугольник имеет 2 пары непересекающихся сторон, то перед вами – параллелограмм.

Общее выражение

Для определения площади данного вида фигуры потребуются:

  • Сторона четырехугольника и высота, на нее опущенная: S = k*h(k),k – сторона фигуры,h(k) – высота к ней.
  • Длина двух сторон, имеющих одну вершину, и градусная мера угла при данной вершине:S = l*k*sinϕ,k, l – стороны многоугольника,ϕ – угол между ними.
  • Диагонали фигуры и угол, полученный как результат их пересечения: S = d1*d2*sinβ/2,d1, d2 – диагонали,β – угол – результат их пересечения.

Ромб

Данный четырехугольник – частный случай параллелограмма, имеющий 4 равные стороны. Поэтому выражения, справедливые для параллелограмма, верны и для него. Тогда

  • S = k*h(k),k – сторона фигуры, h(k) – высота к ней.
  • S = k 2 *sinϕ,k – сторона четырехугольника, ϕ – угол между сторонами.
  • S = d1*d2/2 (т.к. диагонали фигуры при пересечении образую прямой угол, а sin90° = 1),d1, d2 – диагонали многоугольника.

Прямоугольник

Такой многоугольник имеет 2 пары равных сторон, а градусная мера его углов – 90°. Для нахождения его площади справедливы следующие выражения:

  • S = k*l,k, l – стороны фигуры.
  • S = d 2 *sinβ/2,d – диагонали четырехугольника, β – угол – результат их пересечения.
  • S = 2R 2 *sinβ,R – радиус в случае описанной окружности.

Квадрат

В данном случае у соотношения, полученные на предыдущем этапе, приобретут следующий вид (т.к. стороны такого вида прямоугольника равны):

S = k 2 , k – сторона фигуры.

S = d 2 /2, d – диагональ квадрата.

  • S = 2R 2 , R – радиус в случае описанной окружности.
  • S = 4r 4 , r – радиус в случае вписанной окружности.

Четырехугольником называется фигура, состоящая из четырех вершин, три из которых не лежат на одной прямой, и отрезков, соединяющих их.

Существует множество четырехугольников. К ним относятся параллелограммы, квадраты, ромбы, трапеции. Найти можно найти по сторонам, легко вычисляется по диагоналям. В произвольном четырехугольнике также можно использовать все элементы для вывода формулы площади четырехугольника. Для начала рассмотрим формулу площади четырехугольника через диагональ. Для того, чтобы ее использовать потребуются длины диагоналей и размер острого угла между ними. Зная необходимые данные можно проводить пример расчета площади четырехугольника по такой формуле:

Половина произведения диагоналей и синуса острого угла между ними является площадью четырехугольника. Рассмотрим пример расчета площади четырехугольника через диагональ.

Пусть дан четырехугольник с двумя диагоналями d1 =5 см;d2 =4см. Острый угол между ними равен α = 30°. Формула площади четырехугольника через диагонали легко применяется для известных условий. Подставим данные:

На примере расчета площади четырехугольника через диагонали понимаем, что формула очень похожа на расчет .

Как рассчитать площадь стен в квадратных метрах?

Наш онлайн-калькулятор рассчитывает площадь стен в стандартной планировке по классическим математическим формулам определения площади простых фигур:

Sстен = (a× b)1 + .. + (a × b)4 — ((a × b)окна × n) — ((a × b)двери × n), где a, b – стороны, n – количество.

Если же в вашем случае, стены имеют нестандартную форму – треугольника, трапеции или неправильного четырехугольника (например, в мансардном помещении), рекомендуем самостоятельно воспользоваться соответствующими формулами расчета площади стен и выполнить операцию вручную. В более сложных ситуациях, необходимо разбивать поверхности на отдельные фигуры и складывать получившиеся значения.

  • Формула расчета площади стен треугольной формы: S = (a × h) / 2, где а – основание, h – высота.
  • Формула расчета площади стен квадратной формы: S = a 2 , где а – сторона.
  • Формула расчета площади стен прямоугольной формы: S = a × b, где а, b – стороны.
  • Формула расчета площади стен трапециевидной формы: S = ((a + b)× h)/ 2, где a, b – основания, h – высота.

Периодически нам требуется знать площадь и объем комнаты. Эти данные могут понадобиться при проектировании отопления и вентиляции, при закупке стройматериалов и еще во многих других ситуациях. Также периодически требуется знать площадь стен. Все эти данные вычисляются легко, но предварительно придется поработать рулеткой — измерять все требуемые габариты. О том, как посчитать площадь комнаты и стен, объем помещения и пойдет речь дальше.

Часто требуется посчитать кубатуру комнаты, ее объем

Советы и рекомендации

Необходимо помнить, что геометрические параметры зданий редко могут быть идеальными. Поэтому для определения точных величин замеры лучше производить в нескольких местах, а затем выводить среднее арифметическое. Например, рассчитывая площадь комнаты по стенам, длину лучше измерять по потолку, плинтусу и в середине вертикальной плоскости. Высоту — в углах и середине стены по отвесу.

Чтобы вычислить периметр при наличии множества выступов и ниш разных форм, необходимо проложить вдоль всех элементов шнур, затем измерить его рулеткой.

Подсчитав точные параметры, можно идти в магазин за строительными материалами. Лучше показать схемы с нанесенными размерами продавцу-консультанту. Специалист поможет рассчитать расход материалов с учетом нахлеста, подбора рисунка обоев или потерь при резке плитки.

Формулы расчета

Зная площади простых фигур, можно находить параметры более сложных. Античными математиками были выведены формулы, по которым можно легко их вычислять. Такими фигурами являются треугольник, четырёхугольник, многоугольник, круг.

Чтобы найти площадь сложной плоской фигуры, её разбивают на множество простых фигур, таких как треугольники, трапеции или прямоугольники. Затем математическими методами выводят формулу для площади этой фигуры. Подобный метод используют не только в геометрии, но и в математическом анализе для вычисления площадей фигур, ограниченных кривыми.

Треугольник

Начнём с самой простой фигуры — треугольника. Они бывают прямоугольные, равнобедренные и равносторонние. Возьмём любой треугольник ABC со сторонами AB=a, BC=b и AC=c (∆ ABC). Чтобы найти его площадь, вспомним известные из школьного курса математики теоремы синусов и косинусов. Отпуская все выкладки, придём к следующим формулам:

  • S=√ — известная всем формула Герона, где p=(a+b+c)/2 — полупериметр треугольника;
  • S=a•h/2, где h — высота, опущенная на сторону a;
  • S=a•b•(sin γ)/2, где γ — угол между сторонами a и b;
  • S=a•b/2, если ∆ ABC — прямоугольный (здесь a и b — катеты);
  • S=b²•(sin (2•β))/2, если ∆ ABC — равнобедренный (здесь b — одно из «бёдер», β — угол между «бёдрами» треугольника);
  • S=a²•√¾, если ∆ ABC — равносторонний (здесь a — сторона треугольника).

Четырёхугольник

Пусть имеется четырёхугольник ABCD, у которого AB=a, BC=b, CD=c, AD=d. Чтобы найти площадь S произвольного 4-угольника, нужно разделить его диагональю на два треугольника, площади которых S1 и S2 в общем случае не равны.

Затем по формулам вычислить их и сложить, т. е. S=S1+S2. Однако, если 4-угольник принадлежит к определённому классу, то его площадь можно найти по заранее известным формулам:

  • S=(a+c)•h/2=e•h, если 4-угольник — трапеция (здесь a и c — основания, e — средняя линия трапеции, h — высота, опущенная на одно из оснований трапеции;
  • S=a•h=a•b•sin φ=d1•d2•(sin φ)/2, если ABCD — параллелограмм (здесь φ — угол между сторонами a и b, h — высота, опущенная на сторону a, d1 и d2 — диагонали);
  • S=a•b=d²/2, если ABCD — прямоугольник (d — диагональ);
  • S=a²•sin φ=P²•(sin φ)/16=d1•d2/2, если ABCD — ромб (a — сторона ромба, φ — один из его углов, P — периметр);
  • S=a²=P²/16=d²/2, если ABCD — квадрат.

Многоугольник

Чтобы найти площадь n-угольника, математики разбивают его на простейшие равные фигуры —треугольники, находят площадь каждого из них и затем складывают. Но если многоугольник относится к классу правильных, то используют формулу:

S=a•n•h/2=a²•n/[4•tg (180°/n)]=P²/[4•n•tg (180°/n)], где n — количество вершин (или сторон) многоугольника, a — сторона n-угольника, P — его периметр, h — апофема, т. е. отрезок, проведённый из центра многоугольника к одной из его сторон под углом 90°.

Круг — это совершенный многоугольник, имеющий бесконечное число сторон. Нам необходимо вычислить предел выражения справа в формуле площади многоугольника при числе сторон n, стремящемуся к бесконечности. В этом случае периметр многоугольника превратится в длину окружности радиуса R, которая будет границей нашего круга, и станет равен P=2•π•R. Подставим это выражение в указанную выше формулу. Мы получим:

Найдём предел этого выражения при n→∞. Чтобы это сделать, учтём, что lim (cos (180°/n)) при n→∞ равен cos 0°=1 (lim — знак предела), а lim [1/(n•sin (180°/n))]= lim [1/(n•sin (π/n))] при n→∞ равен 1/π (мы перевели градусную меру в радианную, используя соотношение π рад=180°, и применили первый замечательный предел lim (sin x)/x=1 при x→∞). Подставив в последнее выражение для S полученные значения, придём к известной формуле:

Способ расчета площади ромба

Ромб – это параллелограмм, у которого все стороны равны. Ромб у которого все углы прямые называется квадратом.Формула площади ромба: , где a – стороны, h – высота

Ромб – это параллелограмм, у которого все стороны равны. Ромб у которого все углы прямые называется квадратом.Формула площади ромба: , где d1, d2 – диагонали

Ромб – это параллелограмм, у которого все стороны равны. Ромб у которого все углы прямые называется квадратом.Формула площади ромба: , где a – сторона, α – угол между сторонами

Ромб – это параллелограмм, у которого все стороны равны. Ромб у которого все углы прямые называется квадратом.Формула площади ромба: где r – радиус вписанной окружности, α – угол между сторонами

Ромб – это параллелограмм, у которого все стороны равны. Ромб у которого все углы прямые называется квадратом.Формула площади ромба: , где r – радиус вписанной окружности, a – сторона

Ромб. Формулы, признаки и свойства ромба

Определение.

Ромб — это параллелограмм, который имеет равные стороны. Если у ромба все углы прямые, тогда он называется квадратом.

Ромбы отличаются между собой размером стороны и размером углов.

Рис.1 Рис.2

Параллелограмм ABCD будет ромбом, если выполняется хотя бы одно из следующих условий:

1. Две его смежные стороны равны (отсюда следует, что все стороны равны):

АВ = ВС = СD = AD

2. Его диагонали пересекаются под прямым углом:

AC┴BD

3. Одна из диагоналей (бисектрисса) делит содержащие её углы пополам:

∠BAC = ∠CAD или ∠BDA = ∠BDC

4. Если все высоты равны:

BN = DL = BM = DK

5. Если диагонали делят параллелограмм на четыре равных прямоугольных треугольника:

Δ ABO = Δ BCO = Δ CDO = Δ ADO

6. Если в параллелограмм можно вписать круг.

1. Имеет все свойства параллелограмма
2. Диагонали перпендикулярны:

AC┴BD

3. Диагонали являются биссектрисами его углов:

∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC

4. Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре:

AC2 + BD2 = 4AB2

5. Точка пересечения диагоналей называется центром симметрии ромба.

6. В любой ромб можно вписать окружность.

7. Центром окружности вписанной в ромб будет точка пересечения его диагоналей.

1. Формула стороны ромба через площадь и высоту:

2. Формула стороны ромба через площадь и синус угла:
3. Формула стороны ромба через площадь и радиус вписанной окружности:

4. Формула стороны ромба через две диагонали:

5. Формула стороны ромба через диагональ и косинус острого угла (cos α) или косинус тупого угла (cos β):
6. Формула стороны ромба через большую диагональ и половинный угол:
7. Формула стороны ромба через малую диагональ и половинный угол:
8. Формула стороны ромба через периметр:

Определение.

Диагональю ромба называется любой отрезок соединяющий две вершины противоположных углов ромба.

Ромб имеет две диагонали — длинную d1, и короткую — d2

1. Формулы большой диагонали ромба через сторону и косинус острого угла (cosα) или косинус тупого угла (cosβ)

d1 = a√2 + 2 · cosα

d1 = a√2 — 2 · cosβ

2. Формулы малой диагонали ромба через сторону и косинус острого угла (cosα) или косинус тупого угла (cosβ)

d2 = a√2 + 2 · cosβ

d2 = a√2 — 2 · cosα

3. Формулы большой диагонали ромба через сторону и половинный угол:

d1 = 2a · cos(α/2)

d1 = 2a · sin(β/2)

4. Формулы малой диагонали ромба через сторону и половинный угол:

d2 = 2a · sin(α/2)

d2 = 2a · cos(β/2)

5. Формулы диагоналей ромба через сторону и другую диагональ:

d1 = √4a2 — d22

d2 = √4a2 — d12

6. Формулы диагоналей через тангенс острого tgα или тупого tgβ угла и другую диагональ:

d1 = d2 · tg(β/2)

d2 = d1 · tg(α/2)

7. Формулы диагоналей через площадь и другую диагональ:

8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:

Определение.

Периметром ромба называется сумма длин всех сторон ромба.

Длину стороны ромба можна найти за формулами указанными выше.

Формула периметра ромба через сторону ромба:

P = 4a

Определение.

Площадью ромба называется пространство ограниченное сторонами ромба, т.е. в пределах периметра ромба.
1. Формула площади ромба через сторону и высоту:

S = a · ha

2. Формула площади ромба через сторону и синус любого угла:

S = a2 · sinα

3. Формула площади ромба через сторону и радиус:

S = 2a · r

4. Формула площади ромба через две диагонали:
5. Формула площади ромба через синус угла и радиус вписанной окружности:
6. Формулы площади через большую диагональ и тангенс острого угла (tgα) или малую диагональ и тангенс тупого угла (tgβ):

Определение.

Кругом вписанным в ромб называется круг, который примыкает ко всем сторонам ромба и имеет центр на пересечении диагоналей ромба.
1. Формула радиуса круга вписанного в ромб через высоту ромба:
2. Формула радиуса круга вписанного в ромб через площадь и сторону ромба:
3. Формула радиуса круга вписанного в ромб через площадь и синус угла:
4. Формулы радиуса круга вписанного в ромб через сторону и синус любого угла:

5. Формулы радиуса круга вписанного в ромб через диагональ и синус угла:

6. Формула радиуса круга вписанного в ромб через две диагонали:
7. Формула радиуса круга вписанного в ромб через две диагонали и сторону:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Единицы измерения

Применяются системные и внесистемные единицы измерения. Системные единицы относятся к СИ (Система Интернациональная). Это квадратный метр (кв. метр, м²) и единицы, производные от него: мм², см², км².

В квадратных миллиметрах (мм²), например, измеряют площадь сечения проводов в электротехнике, в квадратных сантиметрах (см²) — сечения балки в строительной механике, в квадратных метрах (м²) — квартиры или дома, в квадратных километрах (км²) — территории в географии.

Однако иногда используются и внесистемные единицы измерения, такие, как: сотка, ар (а), гектар (га) и акр (ас). Приведём следующие соотношения:

  • 1 сотка=1 а=100 м²=0,01 га;
  • 1 га=100 а=100 соток=10000 м²=0,01 км²=2,471 ас;
  • 1 ас= 4046.856 м²=40,47 а=40,47 соток=0,405 га.

Для оценки сметы и объема закупок перед началом отделочных работ нужно знать метраж стен. Расход большинства строительных материалов (краски, штукатурки, шпаклевки) определяется площадью. Также этот параметр важен при поиске бригад, так как большинство отделочников работы оценивают по стоимости за квадратный метр.

Определения и соглашения

В приведённой ниже таблице будут указаны определения и договорённости, которые будут использоваться в дальнейшем во время наших рассуждений.

  1. Четырёхугольник — это фигура из четырёх точек (вершин), из которых любые три не лежат на одной прямой, и четырёх отрезков (сторон) последовательно их соединяющих.
  2. Диагональ — отрезок, соединяющий вершины многоугольника не лежащие на одной стороне (её обозначение – латинская буква d).
  3. Площадь фигуры — это численное значение территории, заключённой внутри многоугольника (её обозначение – латинская буква S).
  4. Синус угла — это число равное отношению противоположного катета к гипотенузе в прямоугольном треугольнике. (её обозначение – запись sin).
  5. Косинус угла — это число равное отношению прилежащего катета к гипотенузе в прямоугольном треугольнике. В дальнейшем в статье для его обозначения будем использовать латинскую запись cos.
  6. Описанная окружность — это окружность, которой принадлежат все вершины многоугольника ( её радиуса обозается буквой R).
  7. Вписанная окружность — это окружность, которая касается всех сторон многоугольника. В дальнейшем в статье для обозначения её радиуса будем использовать латинскую букву r.
  8. Угол между сторонами a и b будем обозначать следующей записью (a,b).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер по всему
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: