Содержание:
Треугольная призма и треугольная пирамида (тетраэдр)
В геометрии многогранник — это трехмерное геометрическое тело с плоскими гранями и прямыми краями. Призма — это многогранник с n-сторонним многоугольным основанием, идентичным основанием на другой плоскости и без других параллелограммов, соединяющих соответствующие стороны двух оснований.
Пирамида — это многогранник, образованный соединением многоугольного основания и точки, которая известна как вершина. Основание — многоугольник, а стороны многоугольника соединены с вершиной через треугольники.
Треугольная призма
Треугольная призма — это призма, в основе которой лежат треугольники; т.е. поперечные сечения твердого тела, параллельные основаниям, представляют собой треугольники в любой точке твердого тела. Его также можно рассматривать как пентаэдр с двумя сторонами, параллельными друг другу, в то время как поверхность, нормальная к трем другим поверхностям, лежит в той же плоскости (плоскости, отличной от базовых плоскостей). Стороны, отличные от оснований, всегда являются прямоугольниками.
Призма называется правая призма если плоскости оснований перпендикулярны другим поверхностям.
Объем призмы определяется выражением
Объем = площадь основания × высота
Это произведение площади базового треугольника и длины между двумя основаниями.
Треугольная пирамида (тетраэдр)
Треугольная пирамида — это твердый объект, состоящий из треугольников со всех четырех сторон. Это самый простой тип пирамид. Он также известен как тетраэдр, который также является разновидностью многогранников.
Его также можно рассматривать как твердый объект, образованный путем соединения линий из вершин треугольника в точке над треугольниками. В этом определении грани тетраэдра могут быть разными треугольниками. Однако часто встречается случай правильный тетраэдр, стороны которого равносторонние треугольники.
Объем тетраэдра можно получить по следующей формуле.
Объем = (1/3) площадь основания × высота
Здесь высота относится к нормальному расстоянию между основанием и вершиной.
Поскольку его фигура непосредственно образуется из треугольников, тетраэдры обладают многими аналогичными свойствами треугольников, такими как описанная сфера, вдох, экзосферы и средний тетраэдр. Он имеет соответствующие центры, такие как центр окружности, центр окружности, эксцентриситет, центр Шпикера и точки, такие как центроид.
В чем разница между треугольной призмой и треугольной пирамидой (тетраэдром)?
• И треугольная призма, и треугольная пирамида (Тетраэдр) являются многогранниками, но треугольная призма состоит из треугольников в качестве основания призмы с прямоугольными сторонами, тогда как тетраэдр состоит из треугольников с каждой стороны.
• Следовательно, у треугольной призмы 5 сторон, 6 вершин и 9 ребер, а у тетраэдра 4 стороны, 4 вершины и 6 ребер.
• Площадь поперечного сечения по оси, проходящей через основания, в треугольной призме не изменяется, но в тетраэдре площадь поперечного сечения изменяется (уменьшается с удалением от основания) вдоль оси, перпендикулярной основанию.
• Если тетраэдр и треугольная призма имеют тот же треугольник, что и основание, и одинаковую высоту, объем призмы в три раза превышает объем тетраэдра.
Элементы призмы
Название | Определение | Обозначения на чертеже | Чертеж |
Основания | Две грани, являющиеся конгруэнтными многоугольниками, лежащими в параллельных друг другу плоскостях. | , | |
Боковые грани | Все грани, кроме оснований. Каждая боковая грань обязательно является параллелограммом. | , , , , | |
Боковая поверхность | Объединение боковых граней. | ||
Полная поверхность | Объединение оснований и боковой поверхности. | ||
Боковые рёбра | Общие стороны боковых граней. | , , , , | |
Высота | Отрезок, соединяющий плоскости, в которых лежат основания призмы и перпендикулярный этим плоскостям. | ||
Диагональ | Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани. | ||
Диагональная плоскость | Плоскость, проходящая через боковое ребро призмы и диагональ основания. | ||
Диагональное сечение | Пересечение призмы и диагональной плоскости. В сечении образуется параллелограмм, в том числе его частные случаи — ромб, прямоугольник, квадрат. | ||
Перпендикулярное (ортогональное) сечение | Пересечение призмы и плоскости, перпендикулярной её боковому ребру. |
Вычисление объема правильной пятиугольной призмы
-
1
Запишите формулу для нахождения объема пятиугольной призмы. Формула: V = [1/2 x 5 x сторона пятиугольника x апофема] x высота призмы. Можно использовать первую часть формулы для нахождения площади пятиугольника в основании призмы. Это можно представить как нахождение площади пяти треугольников, составляющих правильный пятиугольник. В этом случае сторона пятиугольника равна основанию треугольника, а апофема — высоте треугольника. Умножим эти величины на 1/2 и получим площадь треугольника, а затем умножим результат на 5, так как 5 одинаковых треугольников составляют основу правильной пятиугольной призмы.
Больше информации о том, как найти апофему, если она не дана, можно найти здесь.
-
2
Найдите площадь пятиугольного основания. Допустим, длина стороны составляет 6 см и длина апофемы равна 7 см. Просто подставьте эти цифры в формулу:
- А = 1/2 х 5 х сторона х апофема.
- А= 1/2 х 5 х 6 см х 7 см = 105 см2.
-
3
Найдите высоту призмы. Допустим, высота призмы равна 10 см.
-
4
Умножьте площадь пятиугольного основания на высоту призмы. Просто умножьте площадь основания (105 см2
105 см2 x 10 см = 1050 см3.
) на высоту (10 см) и найдете объем правильной пятиугольной призмы.
-
5
Запишите ответ в кубических единицах. Окончательный ответ: 1050 см3.
Как выглядит призма
Правильной четырёхугольной призмой называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками. Иное название для этой геометрической фигуры — прямой параллелепипед.
На картинке также можно увидеть важнейшие элементы, из которых состоит геометрическое тело. К ним принято относить:
- Основы призмы — квадраты LMNO и L₁M₁N₁O₁.
- Боковые грани — прямоугольники MM₁L₁L, LL₁O₁O, NN₁O₁O и MM₁N₁N, расположенные под прямым углом к основаниям.
- Боковые рёбра — отрезки, расположенные на стыке между двумя боковыми гранями: M₁M, N₁N, O₁O и L₁L. Также выполняют роль высоты (поскольку лежат в параллельной основаниям плоскости). В призме боковые рёбра всегда равны между собой — это одно из важнейших свойств этого геометрического тела.
- Диагонали, которые, в свою очередь, подразделяются ещё на 3 категории. К ним относится 4 диагонали основания (MO, N₁L₁), 8 диагоналей боковых граней (ML₁, O₁L) и 4 диагонали призмы, начала и концы которых являются вершинами 2 разных оснований и боковых сторон (MO₁, N₁L).
Иногда в задачах по геометрии можно встретить понятие сечения. Определение будет звучать так: сечение — это все точки объёмного тела, принадлежащие секущей плоскости. Сечение бывает перпендикулярным (пересекает рёбра фигуры под углом 90 градусов). Для прямоугольной призмы также рассматривается диагональное сечение (максимальное количество сечений, которых можно построить — 2), проходящее через 2 ребра и диагонали основания.
Если же сечение нарисовано так, что секущая плоскость не параллельна ни основам, ни боковым граням, в результате получается усечённая призма.
Для нахождения приведённых призматических элементов используются различные отношения и формулы. Часть из них известна из курса планиметрии (например, для нахождения площади основания призмы достаточно вспомнить формулу площади квадрата).
Задачи
№ 1. Дана правильная прямая Ее диагональ равна 22 см, высота многогранника — 14 см. Вычислить площадь основания призмы и всей поверхности.
Решение.
Основанием призмы является квадрат, но его сторона не известна. Найти ее значение можно из диагонали квадрата (х), которая связана с диагональю призмы (d) и ее высотой (н). х 2 = d 2 — н 2 . С другой стороны, этот отрезок «х» является гипотенузой в треугольнике, катеты которого равны стороне квадрата. То есть х 2 = а 2 + а 2 . Таким образом получается, что а 2 = (d 2 — н 2)/2.
Подставить вместо d число 22, а «н» заменить его значением — 14, то получается, что сторона квадрата равна 12 см. Теперь просто узнать площадь основания: 12 * 12 = 144 см 2 .
Чтобы узнать площадь всей поверхности, нужно сложить удвоенное значение площади основания и учетверенную боковую. Последнюю легко найти по формуле для прямоугольника: перемножить высоту многогранника и сторону основания. То есть 14 и 12, это число будет равно 168 см 2 . Общая площадь поверхности призмы оказывается 960 см 2 .
Ответ.
Площадь основания призмы равна 144 см 2 . Всей поверхности — 960 см 2 .
№ 2. Дана В основании лежит треугольник со стороной 6 см. При этом диагональ боковой грани составляет 10 см. Вычислить площади: основания и боковой поверхности.
Решение.
Так как призма правильная, то ее основанием является равносторонний треугольник. Поэтому его площадь оказывается равна 6 в квадрате, умноженному на ¼ и на корень квадратный из 3. Простое вычисление приводит к результату: 9√3 см 2 . Это площадь одного основания призмы.
Все боковые грани одинаковые и представляют собой прямоугольники со сторонами 6 и 10 см. Чтобы вычислить их площади, достаточно перемножить эти числа. Потом умножить их на три, потому что боковых граней у призмы именно столько. Тогда площадь боковой поверхности оказывается раной 180 см 2 .
Ответ.
Площади: основания — 9√3 см 2 , боковой поверхности призмы — 180 см 2 .
h
Начертим отдельно основание призмы, т. е. треугольник АBС (рис. 307, а), и достроим его до прямоугольника, для чего через вершину В проведём прямую КМ || АС и из точек A и С опустим на эту прямую перпендикуляры АF и СЕ. Получим прямоугольник АСЕF. Проведя высоту ВD треугольника АBС, увидим, что прямоугольник АСЕF разбился на 4 прямоугольных треугольника. Причём \(\Delta\)ВСЕ = \(\Delta\)BCD и \(\Delta\)BAF = \(\Delta\)BAD. Значит, площадь прямоугольника АСЕF вдвое больше площади треугольника АBС, т. е. равна 2S.
К данной призме с основанием АBС пристроим призмы с основаниями ВСЕ и BАF и высотой h
(рис. 307, б). Получим прямоугольный параллелепипед с основанием АСЕF.
Если этот параллелепипед рассечём плоскостью, проходящей через прямые BD и BB’, то увидим, что прямоугольный параллелепипед состоит из 4 призм с основаниями BCD, ВСЕ, BАD и BAF.
Призмы с основаниями BCD и ВСЕ могут быть совмещены, так как основания их равны (\(\Delta\)BCD = \(\Delta\)BСЕ) и также равны их боковые рёбра, являющиеся перпендикулярами к одной плоскости. Значит, объёмы этих призм равны. Также равны объёмы призм с основаниями BАD и BАF.
Таким образом, оказывается, что объём данной треугольной призмы с основанием АBС вдвое меньше объёма прямоугольного параллелепипеда с основанием АСЕF.
Нам известно, что объём прямоугольного параллелепипеда равен произведению площади его основания на высоту, т. е. в данном случае равен 2Sh
. Отсюда объём данной прямой треугольной призмы равен Sh
.
Объём прямой треугольной призмы равен произведению площади её основания на высоту.
2. Объём прямой многоугольной призмы.
h
Обозначив площади основания треугольных призм через S 1 , S 2 и S 3 , а объём данной многоугольной призмы через V, получим:
V = S 1 h
+ S 2 h
+ S 3 h
, или
V = (S 1 + S 2 + S 3)h
.
И окончательно: V = Sh
.
Таким же путём выводится формула объема прямой призмы, имеющей в основании любой многоугольник.
Значит, объём любой прямой призмы равен произведению площади её основания на высоту.
Треугольная призма
Она имеет в основании фигуру, имеющую три вершины, то есть треугольник. Он, как известно, бывает разным. Если то достаточно вспомнить, что его площадь определяется половиной произведения катетов.
Математическая запись выглядит так: S = ½ ав.
Чтобы узнать площадь основания в общем виде, пригодятся формулы: Герона и та, в которой берется половина стороны на высоту, проведенную к ней.
Первая формула должна быть записана так: S = √(р (р-а) (р-в) (р-с)). В этой записи присутствует полупериметр (р), то есть сумма трех сторон, разделенная на два.
Вторая: S = ½ н а * а.
Если требуется узнать площадь основания треугольной призмы, которая является правильной, то треугольник оказывается равносторонним. Для него существует своя формула: S = ¼ а 2 * √3.
Объем правильной треугольной призмы
Общую формулу объема треугольной призмы, которая приведена в предыдущем разделе статьи, можно использовать для вычисления соответствующей величины для правильной треугольной призмы. Поскольку в ее основании лежит равносторонний треугольник, то его площадь равна:
Эту формулу может получить каждый, если вспомнит, что в равностороннем треугольнике все углы равны друг другу и составляют 60 o . Здесь символ a — это длина стороны треугольника.
Высота h является длиной ребра. Она никак не связана с основанием правильной призмы и может принимать произвольные значения. В итоге формула объема треугольной призмы правильного вида выглядит так:
Вычислив корень, можно переписать эту формулу так:
Таким образом, чтобы найти объем правильной призмы с треугольным основанием, необходимо возвести в квадрат сторону основания, умножить эту величину на высоту и полученное значение умножить на 0,433.
Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию
Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.
Сбор и использование персональной информации
Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.
От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.
Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.
Какую персональную информацию мы собираем:
Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.
Как мы используем вашу персональную информацию:
- Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
- Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
- Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
- Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.
Раскрытие информации третьим лицам
Мы не раскрываем полученную от Вас информацию третьим лицам.
Исключения:
- В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
- В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.
Защита персональной информации
Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения
Соблюдение вашей конфиденциальности на уровне компании
Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.
Школьникам, которые готовятся к сдаче ЕГЭ по математике, обязательно стоит научиться решать задачи на нахождение площади прямой и правильной призмы. Многолетняя практика подтверждает тот факт, что подобные задания по геометрии многие учащиеся считают достаточно сложными.
При этом уметь находить площадь и объем правильной и прямой призмы должны старшеклассники с любым уровнем подготовки. Только в этом случае они смогут рассчитывать на получение конкурентных баллов по итогам сдачи ЕГЭ.
Как полуправильный (или равномерный) многогранник [ править ]
Прямоугольная призма является полуправильной или, в более общем смысле, однородным многогранником, если ее базовые грани представляют собой равносторонние треугольники , а три другие грани — квадраты . Его можно рассматривать как усеченный тригональный осоэдр , представленный символом Шлефли t {2,3}. В качестве альтернативы его можно рассматривать как декартово произведение треугольника и отрезка линии , представленное произведением {3} x {}. Двойной треугольной призмы является треугольной бипирамида .
Группа симметрии правой 3-сторонней призмы с треугольным основанием — это D 3h порядка 12. Группа вращений — это D 3 порядка 6. Группа симметрии не содержит инверсии .
Связанные многогранники и мозаики [ править ]
Правильный тетраэдр или тетрагональной равногранный тетраэдр можно разрезать на две половинки с центральной площади. Каждая половина представляет собой топологическую треугольную призму.
Семейство однородных призм | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Многогранник | |||||||||||
Coxeter | |||||||||||
Черепица | |||||||||||
Конфиг. | 2.4.4 | 3.4.4 | 4.4.4 | 5.4.4 | 6.4.4 | 7.4.4 | 8.4.4 | 9.4.4 | 10.4.4 | 11.4.4 | 12.4.4 |
п | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
Имя | {2} || т {2} | {3} || т {3} | {4} || т {4} | {5} || т {5} | {6} || т {6} |
Купол | Дигональный купол | Треугольный купол | Квадратный купол | Пятиугольный купол | Шестиугольный купол (плоский) |
Связанные однородные многогранники | Треугольная призма | Cubocta- гранник | Rhombi- cubocta- гранник | Rhomb- icosidodeca- гранник | Rhombi- trihexagonal плиточные |
Мутации симметрии
Этот многогранник топологически связан как часть последовательности однородных усеченных многогранников с конфигурациями вершин (3.2n.2n) и симметрией группы Кокстера .
* n 32 изменение симметрии усеченных мозаик: t { n , 3} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Симметрия * n 32 | Сферический | Евклид. | Компактная гипербола. | Paraco. | Некомпактный гиперболический | ||||||
* 232 | * 332 | * 432 | * 532 | * 632 | * 732 | * 832 … | * ∞32 | ||||
Усеченные фигуры | |||||||||||
Условное обозначение | т {2,3} | т {3,3} | т {4,3} | т {5,3} | т {6,3} | т {7,3} | т {8,3} | т {∞, 3} | т {12i, 3} | т {9i, 3} | т {6i, 3} |
Фигуры Триаки |
|||||||||||
Конфиг. | V3.4.4 | V3.6.6 | V3.8.8 | V3.10.10 | V3.12.12 | V3.14.14 | V3.16.16 | V3.∞.∞ |
Этот многогранник топологически связан как часть последовательности скошенных многогранников с фигурой вершины (3.4.n.4) и продолжается как мозаики гиперболической плоскости . Эти вершинно-транзитивные фигуры обладают (* n32) отражательной симметрией .
Этот многогранник топологически связан как часть последовательности скошенных многогранников с фигурой вершины (3.4.n.4) и продолжается как мозаики гиперболической плоскости . Эти вершинно-транзитивные фигуры обладают (* n32) отражательной симметрией .
* n 32 изменение симметрии расширенных мозаик: 3.4. п. 4 | ||||||||
---|---|---|---|---|---|---|---|---|
Симметрия * n 32 | Сферический | Евклид. | Компактная гипербола. | Paracomp. | ||||
* 232 | * 332 | * 432 | * 532 | * 632 | * 732 | * 832 … | * ∞32 | |
Фигура | ||||||||
Конфиг. | 3.4.2.4 | 3.4.3.4 | 3.4.4.4 | 3.4.5.4 | 3.4.6.4 | 3.4.7.4 | 3.4.8.4 | 3.4.∞.4 |
Соединения
Есть 4 однородных соединения треугольных призм:
- Соединение четырех треугольных призм , соединение восьми треугольных призм , соединение десяти треугольных призм , соединение двадцати треугольных призм .
Соты
Есть 9 однородных сот, которые включают ячейки треугольной призмы:
- Gyroelongated чередовались кубические сотни , удлиненной чередовались кубические соты , вращались треугольные призматические сотни , пренебрежительны квадратные призматические соты , треугольные призматические соты , треугольный-гексагональной призматические соты , усеченный гексагональный призматические сотни , rhombitriangular-гексагональная призматические сотни , вздернутые треугольные гексагональной призматические сотни , удлиненный треугольными призматические соты
Связанные многогранники
Треугольная призма является первой в размерном ряду полуправильных многогранников . Каждый прогрессивный равномерный многогранник строится вершинной фигурой предыдущего многогранника. Торольд Госсет определил эту серию в 1900 году как содержащую все фасеты правильных многогранников , содержащие все симплексы и ортоплексы ( равносторонние треугольники и квадраты в случае треугольной призмы). В обозначениях Кокстера треугольной призме присвоен символ −1 21 .
k 21 фигурка в n мерном | ||||||||
---|---|---|---|---|---|---|---|---|
Космос | Конечный | Евклидово | Гиперболический | |||||
E n | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Группа Коксетера | Е 3 = А 2 А 1 | Е 4 = А 4 | E 5 = D 5 | E 6 | E 7 | E 8 | E 9 = = E 8 +E~8{\ displaystyle {\ tilde {E}} _ {8}} | E 10 = = E 8 ++Т¯8{\ displaystyle {\ bar {T}} _ {8}} |
Диаграмма Кокстера | ||||||||
Симметрия | ||||||||
Приказ | 12 | 120 | 1,920 | 51 840 | 2 903 040 | 696 729 600 | ∞ | |
График | — | — | ||||||
Имя | −1 21 | 0 21 | 1 21 | 2 21 | 3 21 | 4 21 | 5 21 | 6 21 |
Четырехмерное пространство
Треугольная призма существует в виде ячеек ряда четырехмерных однородных 4-многогранников , в том числе:
Четырехмерные многогранники с треугольными призмами | |||||||
---|---|---|---|---|---|---|---|
Тетраэдрическая призма | Восьмигранная призма | Кубооктаэдрическая призма | Икосаэдрическая призма | Икозододекаэдрическая призма | Усеченная додекаэдрическая призма | ||
Ромбо-икосододекаэдрическая призма | Ромби-кубооктаэдрическая призма | Усеченная кубическая призма | Плоская додекаэдрическая призма | n-угольная антипризматическая призма | |||
Собранный 5-элементный | Усеченный 5-элементный | Ранцинированный 5-клеточный | Усеченный 5-элементный | Кантеллированный тессеракт | Урезанный тессеракт | Запущенный тессеракт | Выполнить усеченный тессеракт |
Собранный 24-элементный | Cantitruncated 24-элементный | Ранцинированный 24-элементный | Runcitruncated 24-элементный | Собранный 120-элементный | Cantitruncated 120 ячеек | Ранцинированный 120-клеточный | Усеченный 120-элементный |
Решение простого примера
Такого вида задачи обычно даются в учебниках по геометрии для выпускных классов средней школы. Решить их самостоятельно несложно, нужно только знать формулы и представлять, как выглядит та или иная фигура. При этом часто приходится использовать дополнительные построения. Вот один из таких типовых примеров.
Пусть имеется девятиугольная фигура, в которую вписана правильная шестиугольная призма со стандартным обозначением вершин. Сторона основания в ней составляет 4 см, а длина бокового ребра меньше её в 2 раза, то есть равняется 2. Необходимо вычислить расстояние от точки C1 до прямой, соединяющей вершины EF. По условию задачи в основании лежит геометрическое тело, у которого все стороны и углы равны, то есть фигура правильная.
Чтобы понять, что будет представлять искомая прямая, нужно изобразить призму на рисунке и на нём же начертить отрезок. Фактически это будет перпендикуляр, который и является вычисляемым расстоянием. Проекцией точки С1 будет вершина С. Из неё можно построить перпендикуляр, который ограничится точкой E. Таким образом, поставленная задача сводится к поиску длины отрезка C1E.
Найти длину прямой можно как гипотенузу прямоугольного треугольника С1СE. Треугольная фигура будет с прямым углом C. Из условия задачи отрезок С1С в два раза меньше ребра основания, а значит равен 2. Теперь осталось найти, чему равняется длина CE. Геометрическое тело CDE является равнобедренным. По условию CD = ED. Сумму углов шестиугольника можно найти по формуле е = 180 * (n — 2) = 180 * 4 = 720. Получается, что на каждый угол приходится по 120 градусов.
С вершины D можно опустить перпендикуляр DN на CE
Принимая во внимание свойства равнобедренного треугольника, высота DN будет медианной и биссектрисой. Следовательно, угол C равняется 30 градусов, так как CDH — прямоугольный
Теперь можно найти СH. Сделать это возможно через косинус угла C: cos 30 = CH / CD. Отсюда: CH = 4 * p/2 = 2 √ 3. Так как CH = HE, сторона CE = 2 * 2 √3. К треугольнику CC1E можно применить теорему Пифагора: C1E2 = C1C2 + CE = 22 + (4 c3) 2. C1E2 = √ 52. Таким образом, искомый ответ можно записать так: C1E = 2√13.
Определение призмы
Призма — это объемный многогранник, две грани которого представляют собой равные (одинаковые) многоугольники, лежащие в параллельных плоскостях, а остальные грани представляют собой параллелограммы, противолежащие грани у которых являются общими с соответствующими сторонами параллельных многоугольников.
Ниже, на рисунке изображены треугольная, четырехугольная и наклонная четырехугольная призма. Обычно (но не обязательно) для упрощения понимания взаимного расположения оснований и их сторон, обозначения нижнего основания начинают латинскими буквами А, B, C и так далее, а соответствующие стороны верхнего основания обозначают теми же буквами с добавлением единицы — А1, B1, C1 и так далее.
Другие определения призмы:
Призма — многогранник, основаниями которого являются равные многоугольники, соответствующие боковые грани которого представляют собой параллелограммы.
Другие определения:
Равные многоугольники, лежащие в параллельных плоскостях, называются основаниями призмы.
Грани призмы, соединяющие ее основания призмы (ABCD и A1B1C1D1), называются боковыми гранями.
Площадь (объединение, совокупность) всех боковых граней призмы называется боковой поверхностью.
Общие грани параллелограммов, соединяющие основания призмы, называются боковыми ребрами. (AA1 BB1 CC1 и т.д.)
Длина отрезка, соединяющего основания призмы и перпендикулярного одновременно обоим основаниям, является (называется) высотой призмы.
Отрезок проведенный между двумя вершинами многогранника, представляющего собой призму, так, чтобы он не принадлежал ни одной плоскости призмы (основаниям или боковым граням) называется диагональю призмы. (АС1)
Плоскость, проходящая через боковое ребро призмы и диагональ основания (не путать с диагональю призмы!) называется диагональной плоскостью. (AA1C1C)
Свойства призмы
- Основания призмы являются равными многоугольниками.
- Боковые грани призмы являются параллелограммами.
- Боковые рёбра призмы параллельны и равны.
- Объём призмы равен произведению её высоты на площадь основания:
Объём призмы с правильным n-угольным основанием равен
(здесь s — длина стороны многоугольника).
- Перпендикулярное сечение перпендикулярно ко всем боковым рёбрам призмы.
- Углы перпендикулярного сечения — это линейные углы двугранных углов при соответствующих боковых рёбрах.
- Перпендикулярное сечение перпендикулярно ко всем боковым граням.
- Двойственным многогранником прямой призмы является бипирамида.
Подготовка к единому госэкзамену вместе со «Школково» — залог вашего успеха!
Чтобы занятия проходили легко и максимально эффективно, выбирайте наш математический портал. Здесь представлен весь необходимый материал, который поможет подготовиться к прохождению аттестационного испытания.
Специалисты образовательного проекта «Школково» предлагают пойти от простого к сложному: сначала мы даем теорию, основные формулы, теоремы и элементарные задачи с решением, а затем постепенно переходим к заданиям экспертного уровня.
Базовая информация систематизирована и понятно изложена в разделе «Теоретическая справка». Если вы уже успели повторить необходимый материал, рекомендуем вам попрактиковаться в решении задач на нахождение площади и объема прямой призмы. В разделе «Каталог» представлена большая подборка упражнений различной степени сложности.
Попробуйте рассчитать площадь прямой и правильной призмы или прямо сейчас. Разберите любое задание. Если оно не вызвало сложностей, можете смело переходить к упражнениям экспертного уровня. А если определенные трудности все же возникли, рекомендуем вам регулярно готовиться к ЕГЭ в онлайн-режиме вместе с математическим порталом «Школково», и задачи по теме «Прямая и правильная призма» будут даваться вам легко.
Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию
Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.
Сбор и использование персональной информации
Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.
От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.
Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.
Какую персональную информацию мы собираем:
Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.
Как мы используем вашу персональную информацию:
- Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
- Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
- Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
- Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.
Раскрытие информации третьим лицам
Мы не раскрываем полученную от Вас информацию третьим лицам.
Исключения:
- В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
- В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.
Защита персональной информации
Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения
Соблюдение вашей конфиденциальности на уровне компании
Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.
В физике треугольная призма, сделанная из стекла, часто используется для изучения спектра белого света, поскольку она способна разлагать его на отдельные составляющие. В данной статье рассмотрим формулу объема
Нахождение элементов призмы
Часто встречаются задачи, в которых дан объём или известна величина боковой площади поверхности, где необходимо определить длину стороны основания или высоту. В таких случаях формулы можно вывести:
- длина стороны основания: a = Sбок / 4h = √(V / h);
- длина высоты или бокового ребра: h = Sбок / 4a = V / a²;
- площадь основания: Sосн = V / h;
- площадь боковой грани: Sбок. гр = Sбок / 4.
Чтобы определить, какую площадь имеет диагональное сечение, необходимо знать длину диагонали и высоту фигуры. Для квадрата d = a√2.
Из этого следует:
Sдиаг = ah√2
Для вычисления диагонали призмы используется формула:
dприз = √(2a² + h²)
Чтобы понять, как применять приведённые соотношения, можно попрактиковаться и решить несколько несложных заданий.
Подготовка к единому госэкзамену вместе со «Школково» — залог вашего успеха!
Чтобы занятия проходили легко и максимально эффективно, выбирайте наш математический портал. Здесь представлен весь необходимый материал, который поможет подготовиться к прохождению аттестационного испытания.
Специалисты образовательного проекта «Школково» предлагают пойти от простого к сложному: сначала мы даем теорию, основные формулы, теоремы и элементарные задачи с решением, а затем постепенно переходим к заданиям экспертного уровня.
Базовая информация систематизирована и понятно изложена в разделе «Теоретическая справка». Если вы уже успели повторить необходимый материал, рекомендуем вам попрактиковаться в решении задач на нахождение площади и объема прямой призмы. В разделе «Каталог» представлена большая подборка упражнений различной степени сложности.
Попробуйте рассчитать площадь прямой и правильной призмы или прямо сейчас. Разберите любое задание. Если оно не вызвало сложностей, можете смело переходить к упражнениям экспертного уровня. А если определенные трудности все же возникли, рекомендуем вам регулярно готовиться к ЕГЭ в онлайн-режиме вместе с математическим порталом «Школково», и задачи по теме «Прямая и правильная призма» будут даваться вам легко.
Разные призмы непохожи друг на друга. В то же время у них много общего. Чтобы найти площадь основания призмы, потребуется разобраться в том, какой вид оно имеет.