Теория. Периметр трапеции
Периметр трапеции равен сумме длин ее сторон.
где P — периметр трапеции, a, с — длины основ трапеции, b, d — длины боковых сторон трапеции.
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool. Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Периметр трапеции часто нужно определить в задачах по геометрии. Периметр трапеции определяется также как и периметр любой другой фигуры на плоскости:
Периметр плоской фигуры — есть сумма всех сторон фигуры.
Чему равен периметр равнобедренной трапеции — то же самое — сумме всех ее сторон.
Определение периметра прямоугольной трапеции
Периметр прямоугольной трапеции определяется по той же формуле, что и периметр равнобедренной, однако в этом случае формула имеет вид:
Периметр ABCD = АВ+ВС+СD+AD. Рассмотрим пример определения периметра прямоугольной трапеции. В данном примере сторона АВ = 5 см, ВС = 7см, AD = 10 см, длина стороны СD неизвестна.
- опустим высоту из вершины С, высота CH = AB = 5см;
- исходя из рисунка 3, AH = BC = 7 см;
- HD = AD – AH = 10 – 7 = 3 см;
- далее для нахождения периметра, необходимо определить длину стороны СD, являющейся в равнобедренном треугольнике СHD гипотенузой. Согласно теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, таким образом, длина стороны СD = 5,83 см: CD = = 5,83 см;
- подставляя полученные значения в формулу, получим периметр равный 27,83 см: Периметр ABCD = 5+7+5,83+10 = 27,83 см.
Итак, определить длину одной из сторон трапеции можно воспользовавшись теоремой Пифагора. Так же, для определения длины различных сторон трапеции могут помочь следующие формулы:
- формула расчета длины основания через среднюю линию;
- формулы длин сторон через высоту и угол при нижнем основании трапеции;
- формулы длин сторон трапеции через диагонали, высоту и угол между диагоналями;
- формулы длин сторон равнобедренной трапеции через площадь.
Как видно, для решения задач, связанных с расчетом длины сторон трапеции, существует более чем широкий спектр математических приемов, выбор которых обусловлен конкретной ситуацией.
Равнобедренная трапеция
Формула для равнобедренной трапеции отличается от прямоугольника тем, что у первого есть две равные стороны.
P = a + b + 2 * c, где a, b — параллельные стороны, c — две длины одинаковых сторон.
Периметр круга или длина окружности — это произведение радиуса на два Пи или произведение диаметра на Пи.
L = d * π = 2 * r * π, где d — диаметр, r — радиус, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.
Можно выучить все формулы, а можно, запомнив определение о сумме всех сторон, каждый раз проявлять смекалку и вычислять самостоятельно. Давайте потренируемся, как определять периметр фигур!
Как находить периметр трапеции
Что такое периметр? Периметр — это сумма длин всех сторон прямоугольника, к коим трапеция также имеет непосредственное отношение. Все остальные задачи, где неизвестны некоторые величины, сводятся также к суммированию сторон после того, как все неизвестные будут найдены.
А, если все стороны равны? Если вам дана для решения задача, где даны все сторону трапеции a b c d, то их просто нужно сложить все вместе, полученный результат и будет периметром. Периметр прямоугольной трапеции. Предположим, что нам дана прямоугольная трапеция, где известно нижнее основание AD=a, неперпендикулярная сторона CD=d, а также угол Альфа.
Как решать? Проводим из вершины С высоту, которая сразу разделяет нашу трапецию на прямоугольник ABCE и треугольник ECD. Этот треугольник у нас прямой, мы знаем его гипотенузу CD, которая равна d. Теперь находим катеты треугольника по формуле CE = CD*sin(ADC) и ED = CD*cos(ADC). Теперь мы знаем практически все. ВС = АD-ЕD, а сторона АВ соответственно равна найденному ранее катету СЕ. Теперь осталось только сложить все найденные стороны, и ответ готов.
Периметр равнобедренной трапеции
- Известны боковые стороны и средняя линия. Как найти периметр равнобедренной трапеции, если вам известны лишь боковые равные стороны AB и CD и средняя линия EF? Средняя линия трапеции, как известно, параллельна основаниям, и к тому же равна полусумме этих оснований. И чтобы найти длину оснований, нам нужно лишь удвоить длину средней линии. Исходя из этих данных решение таково: Р=2EF+2AB
- Известны основания и высота. В задаче могут быть известны только длины оснований и высота трапеции. Высота образует прямоугольный треугольник, причем их получается два равных. Нижний катет находится очень просто: (АD-ВС)/2. Теперь нам известны оба катета, остается лишь найти гипотенузу, применив теорему Пифагора. Гипотенуза у нас равна корню из суммы квадратов катетов.
- Итак, мы нашли боковую сторону трапеции, их у нас две и они равны, основания нам известны изначально, поэтому нам теперь остается все только сложить, и мы получим искомый периметр. Таким образом, находить периметр трапеции совершенно несложно. Главное и первостепенное в этом деле, знать ее свойства, и тогда у вас никогда не будет проблем с решением задач по трапециям. Поэтому, прежде чем приниматься за вычисления, не помешает немного теории.
Трапеция – четырехугольная геометрическая фигура, имеющая две параллельные стороны, которые называются основаниями, и две непараллельные боковые стороны. Если боковые стороны равны, то фигура называется равнобедренной трапецией. Прямоугольная трапеция – когда одна боковая сторона образует с основанием прямой угол. Для нахождения периметра трапеции можно воспользоваться одним из методов, в зависимости от исходных данных.
Шаги
1
По известным боковым сторонам и основаниям
- 1
Запишите формулу для вычисления периметра трапеции.
Формула: P = T + B + L + R - 2
В формулу подставьте известные длины сторон.
Не используйте этот метод, если не даны значения всех четырех сторон.- Например, верхнее основание трапеции равно 2 см, нижнее основание равно 3 см, а каждая боковая сторона равна 1 см. В этом случае формула примет следующий вид: P = 2 + 3 + 1 + 1
3
Сложите длины сторон.
Так вы найдете периметр трапеции.- В нашем примере: P = 2 + 3 + 1 + 1
2
По известным высоте, боковым сторонам и верхнему основанию- 2
Обозначьте каждую высоту.
- 3
Эта часть равна верхнему основанию (то есть верхней стороне прямоугольника), так как противоположные стороны прямоугольника равны. Не используйте этот метод, если не дано значение верхнего основания. - 4
Формула: a 2 + b 2 = c 2 - 5
Боковую сторону трапеции подставьте вместо c
6
Возведите в квадрат известные значения.
Затем при помощи вычитания обособьте переменную b
7
Извлеките квадратный корень, чтобы найти b .) Вы найдете основание первого прямоугольного треугольника. Напишите найденное значение под основанием соответствующего треугольника.
-
В нашем примере: b 2 = 45
8
Найдите неизвестную сторону второго прямоугольного треугольника.
Для этого запишите теорему Пифагора для второго треугольника и действуйте так, как описано выше. Если дана равнобедренная трапеция, у которой боковые стороны равны, то два прямоугольных треугольника являются равными, то есть любая сторона одного треугольника равна соответствующей стороне другого.
-
Например, если вторая боковая сторона трапеции равна 7 см, то формула запишется так: a 2 + b 2 = c 2
9
Периметр любого многоугольника равен сумме всех его сторон: P = T + B + L + R
3
По известным высоте, основаниям и нижним углам -
1
Разбейте трапецию на прямоугольник и два прямоугольных треугольника.
Если одна сторона трапеции перпендикулярна основаниям, вы не сможете получить два прямоугольных треугольника. В этом случае боковая сторона, перпендикулярная основаниям, равна высоте, а трапеция разбивается на прямоугольник и один прямоугольный треугольник.
- 2
- В нашем примере: P = 2 + 3 + 1 + 1
- Например, верхнее основание трапеции равно 2 см, нижнее основание равно 3 см, а каждая боковая сторона равна 1 см. В этом случае формула примет следующий вид: P = 2 + 3 + 1 + 1
Для этого из каждой вершины трапеции проведите высоту.
2
Обозначьте каждую высоту.
Например, высота трапеции равна 6 см. Из вершин трапеции проведите две высоты (к нижнему основанию). Возле каждой высоты напишите «6 см» (без кавычек).
Так как высоты являются противоположными сторонами прямоугольника, они равны.
3
Обозначьте среднюю часть нижнего основания (она является нижней стороной прямоугольника).
Например, если верхнее основание трапеции равно 6 см, то средняя часть нижнего основания также равна 6 см.
Эта часть равна верхнему основанию (то есть верхней стороне прямоугольника), так как противоположные стороны прямоугольника равны.
4
Напишите функцию (формулу) синуса угла первого прямоугольного треугольника.
Функция: sin θ = B H
5
В формулу синуса подставьте известные величины.
Вместо противоположной стороны подставьте высоту треугольника. Вы найдете гипотенузу, то есть боковую сторону трапеции.
- Например, если нижний угол трапеции равен 35 градусов, а высота треугольника равна 6 см, то формула запишется так: sin (35) = 6 H
6
Найдите синус угла.
Это делается при помощи научного калькулятора, а именно клавиши SIN. Найденное значение подставьте в формулу.- При помощи калькулятора вы найдете, что синус угла в 35 градусов приблизительно равен 0,5738. Таким образом, формула примет следующий вид: 0 , 5738 = 6 H
7
Найдите переменную H.
Для этого каждую сторону уравнения (формулы) умножьте на Н, а затем каждую сторону уравнения разделите на синус угла. Или просто разделите высоту треугольника на синус угла.- В нашем примере: 0 , 5738 = 6 H
8
Найдите гипотенузу второго прямоугольного треугольника.
Напишите функцию (формулу) синуса угла второго прямоугольного треугольника: sin θ = B H
9
Запишите теорему Пифагора для первого прямоугольного треугольника.
Формула: a 2 + b 2 = c 2
10
В формулу подставьте известные величины первого треугольника.
Боковую сторону трапеции подставьте вместо c
11
Найдите b
12
Найдите основание второго прямоугольного треугольника.
Для этого воспользуйтесь теоремой Пифагора (a 2 + b 2 = c 2
13
Сложите значения всех сторон трапеции.
Периметр любого многоугольника равен сумме всех его сторон: P = T + B + L + R или треугольник 90-45-45) существуют формулы, при помощи которых можно найти неизвестные стороны без использования функции синуса или теоремы Пифагора.
- Чтобы найти синус угла, воспользуйтесь научным калькулятором – введите угол, а затем нажмите клавишу SIN. Или используйте тригонометрические таблицы.
- Калькулятор
- Карандаш
- Бумага
- В нашем примере: 0 , 5738 = 6 H
- При помощи калькулятора вы найдете, что синус угла в 35 градусов приблизительно равен 0,5738. Таким образом, формула примет следующий вид: 0 , 5738 = 6 H
Определение периметра
Периметром принято называть длину всех сторон многоугольника. Какой буквой обозначается периметр — заглавной латинской P. Под обозначением «P» удобно писать маленькими буквами название фигуры, чтобы не запутаться в задачах по ходу решения.
Если параметры переданы в разных единицах длины, мы не сможем узнать какая площадь фигуры получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.
В чем измеряется периметр
- квадратный миллиметр (мм 2 );
- квадратный сантиметр (см 2 );
- квадратный дециметр (дм 2 );
- квадратный метр (м 2 );
- квадратный километр (км 2 );
- гектар (га).
Уроки арифметики на русском языке
- Урок №2. Сложение натуральных чисел
- Урок №3. Вычитание натуральных чисел
- Урок №4. Таблица умножения
- Урок №5. Умножение натуральных чисел
- Урок №6. Деление натуральных чисел
- Урок №8. Величины и их измерение
- Урок №10. Делимость чисел
- Урок №13. Обыкновенные дроби
- Урок №15. Сложение дробей
- Урок №16. Вычитание дробей
- Урок №17. Умножение дробей
- Урок №18. Деление дробей
- Урок №21. Конечные десятичные дроби
- Урок №22. Сложение десятичных дробей
- Урок №23. Вычитание десятичных дробей
- Урок №24. Умножение десятичных дробей
- Урок №25. Деление десятичных дробей
- Урок №26. Округление чисел
- Урок №1. Отношение величин
- Урок №2. Пропорции
- Урок №6. Проценты
- Урок №7. Нахождение процентов данного числа
- Урок №12. Среднее арифметическое
- Урок №14. Масштаб
Уроки арифметики на українській мові
- Урок №2. Додавання натуральних чисел
- Урок №3. Віднімання натуральних чисел
- Урок №4. Таблиця множення
- Урок №5. Множення натуральних чисел
- Урок №6. Ділення натуральних чисел
- Урок №8. Величини та їх вимірювання
- Урок №10. Подільність чисел
- Урок №13. Звичайні дроби
- Урок №15. Додавання дробів
- Урок №16. Віднімання дробів
- Урок №17. Множення дробів
- Урок №18. Ділення дробів
- Урок №21. Кінечни десяткові дроби
- Урок №22. Додавання десяткових дробів
- Урок №23. Віднимання десяткових дробів
- Урок №24. Множення десяткових дробів
- Урок №25. Ділення десяткових дробів
- Урок №18. Нескінченний десятковий дріб
- Урок №19. Відношення величин
- Урок №20. Пропорції
- Урок №6. Відсотки
- Урок №7. Відсотки (2)
- Урок №12. Середнє арифметичне
- Урок №14. Масштаб
Примеры решения задач
Пример 1. Пусть задана прямоугольная трапеция, медиана которой равна 12 см и острый угол при основании составляет 45 °. Также известно, что боковая сторона, которая не является высотой, составляет 10 см. Необходимо рассчитать площадь этой фигуры.
Если рассмотреть треугольник прямоугольный, который образован двумя боковыми сторонами и заданным острым углом, то можно рассчитать высоту фигуры:
h = d*sin (α) = 10*sin (45 °) = 7,071 см.
Поскольку из условия задачи известна медиана, то можно применить общую формулу для определения площади трапеции:
S = h*M = 7,071*12 = 84,852 см 2 .
Любопытно отметить, что для решения этой задачи не понадобилось знать длины каждого из оснований.
Пример 2. Известно, что большее из оснований трапеции прямоугольной имеет длину 12 см, ее наклонная сторона равна 10 см, а угол при основании составляет 53,13 °. Необходимо выяснить, как найти площадь прямоугольной трапеции из этих данных.
Для решения задачи удобно использовать следующие общепринятые обозначения:
- α = 53,13 °;
- b = 12 см;
- d = 10 см.
Рассматривая треугольник с прямым углом, который заключен между сторонами b-a, d и c, можно вычислить все неизвестные длины отрезков:
- c = d*sin (α);
- b-a = d*cos (α), откуда a = b — d*cos (α).
Общая формула для площади трапеции приобретает вид:
S = M*h = (a+b)/2*c = (2*b — d*cos (α))*d*sin (α)/2.
Все величины в формуле известны из условия задачи. Если их подставить, то получится ответ: 72 см2.
Пример 3. Известно, что в трапеции с прямыми углами диагонали составляют 7 см и 11 см, высота фигуры равна 5 см. Необходимо найти ее площадь.
Из теоремы Пифагора следует, что каждое из оснований трапеции может быть вычислено следующим образом:
- a = (D1 2 -c 2 )^0,5 = (49−25)^0,5 = 4,9 см;
- b = (D2 2 -c 2 )^0,5 = (121−25)^0,5 = 9,8 см.
Тогда площадь фигуры составит: S = (a+b)*c/2 = (4,9+9,8)*5/2 = 36,75 см2.
Известны: диагонали и углы между ними
Обычно к этим данным присоединяются еще известные величины. Например, основания или средняя линия. Если даны основания, то для ответа на вопрос, как найти высоту трапеции, пригодится такая формула:
н = (d1* d2 * sin γ) / (а + в) или н = (d1* d2 * sin δ) / (а + в). Номер 5.
Это для общего вида фигуры. Если дана равнобедренная, то запись преобразится так:
н = (d12 * sin γ) / (а + в) или н = (d12 * sin δ) / (а + в). Номер 6.
Когда в задаче идет речь о средней линии трапеции, то формулы для поиска ее высоты становятся такими:
н = (d1* d2 * sin γ) / 2m или н = (d1* d2 * sin δ) / 2m. Номер 5а.
н = (d12 * sin γ) / 2m или н = (d12 * sin δ) / 2m. Номер 6а.
Свойства диагоналей трапеции
- Отрезок, соединяющий середины диагоналей трапеции равен половине разности оснований
- Треугольники, образованные основаниями трапеции и отрезками диагоналей до точки их пересечения — подобны
- Треугольники, образованные отрезками диагоналей трапеции, стороны которых лежат на боковых сторонах трапеции — равновеликие (имеют одинаковую площадь)
- Если продлить боковые стороны трапеции в сторону меньшего основания, то они пересекутся в одной точке с прямой, соединяющей середины оснований
- Отрезок, соединяющий основания трапеции, и проходящий через точку пересечения диагоналей трапеции, делится этой точкой в пропорции, равной соотношению длин оснований трапеции
- Отрезок, параллельный основаниям трапеции, и проведенный через точку пересечения диагоналей, делится этой точкой пополам, а его длина равна 2ab/(a + b), где a и b — основания трапеции
Свойства отрезка, соединяющего середины диагоналей трапеции
Соединим середины диагоналей трапеции ABCD, в результате чего у нас появится отрезок LM.
Отрезок, соединяющий середины диагоналей трапеции, лежит на средней линии трапеции.
Данный отрезок параллелен основаниям трапеции.
Длина отрезка, соединяющего середины диагоналей трапеции, равна полуразности ее оснований.
LM = (AD — BC)/2
или
LM = (a-b)/2
Свойства треугольников, образованных диагоналями трапеции
Треугольники, которые образованы основаниями трапеции и точкой пересечения диагоналей трапеции — являются подобными.
Треугольники BOC и AOD являются подобными. Поскольку углы BOC и AOD являются вертикальными — они равны.
Углы OCB и OAD являются внутренними накрест лежащими при параллельных прямых AD и BC (основания трапеции параллельны между собой) и секущей прямой AC, следовательно, они равны.
Углы OBC и ODA равны по той же самой причине (внутренние накрест лежащие).
Так как все три угла одного треугольника равны соответствующим углам другого треугольника, то данные треугольники подобны.
Что из этого следует?
Для решения задач по геометрии подобие треугольников используется следующим образом. Если нам известны значения длин двух соответствующих элементов подобных треугольников, то мы находим коэффициент подобия (делим одно на другое). Откуда длины всех остальных элементов соотносятся между собой точно таким же значением.
Свойства треугольников, лежащих на боковой стороне и диагоналях трапеции
Рассмотрим два треугольника, лежащих на боковых сторонах трапеции AB и CD. Это — треугольники AOB и COD. Несмотря на то, что размеры отдельных сторон у данных треугольников могут быть совершенно различны, но площади треугольников, образованных боковыми сторонами и точкой пересечения диагоналей трапеции равны, то есть треугольники являются равновеликими.
Свойства трапеции, достроенной до треугольника
Если продлить стороны трапеции в сторону меньшего основания, то точка пересечения сторон будет совпадать с прямой линией, которая проходит через середины оснований.
Таким образом, любая трапеция может быть достроена до треугольника. При этом:
- Треугольники, образованные основаниями трапеции с общей вершиной в точке пересечения продленных боковых сторон являются подобными
- Прямая, соединяющая середины оснований трапеции, является, одновременно, медианой построенного треугольника
Свойства отрезка, соединяющего основания трапеции
Если провести отрезок, концы которого лежат на основаниях трапеции, который лежит на точке пересечения диагоналей трапеции (KN), то соотношенее составляющих его отрезков от стороны основания до точки пересечения диагоналей ( KO/ON ) будет равно соотношению оснований трапеции ( BC/AD ).
KO / ON = BC / AD
Данное свойство следует из подобия соответствующих треугольников (см. выше).
Свойства отрезка, параллельного основаниям трапеции
Если провести отрезок, параллельный основаниям трапеции и проходящий через точку пересечения диагоналей трапеции, то он будет обладать следующими свойствами:
- Заданный отрезок (KM) делится точкой пересечения диагоналей трапеции пополам
- Длина отрезка, проходящего через точку пересечения диагоналей трапеции и параллельного основаниям, равна KM = 2ab/(a + b)