Мгновенная и средняя скорость

Что такое мгновенная скорость на реальных примерах

Реальные примеры мгновенной скорости

Если мы рассмотрим пример мяча для сквоша, мяч возвращается в исходную точку; в это время полное смещение и средняя скорость будут равны нулю. В таких случаях движение рассчитывается по формуле мгновенная скорость.

Игра в сквош, пример мгновенной скорости Изображение предоставлено: Изображение предоставлено pixabay.com

Спидометр автомобиля дает информацию о мгновенная скорость / скорость средство передвижения. Он показывает скорость в определенный момент времени.

Спидометр, Изображение предоставлено: Автор изображения pxfuel.com

  • Во время гонки фотографы делают снимки бегунов, их средняя скорость не меняется, но меняется их мгновенная скорость, зафиксированная на «снимках». Так что это будет пример мгновенной скорости.

Изображение предоставлено Commons Wikimedia.org, CC по 2.0 Generic 

Если вы находитесь рядом с магазином, и перед вами проехал автомобиль на отметке «t«Во-вторых, и вы начинаете думать о его скорости на конкретном время, здесь вы имели бы в виду мгновенная скорость транспортного средства.

Движение навстречу друг другу

Если два объекта движутся навстречу друг другу, то они сближаются. Чтобы найти скорость сближения двух объектов, движущихся навстречу друг другу, надо сложить их скорости:  

Задача 1Решение:Решение в виде выражения: 50 * (100 : 25) = 200Ответ
Задача 2

Решение:

1) 25 + 20 = 45 (сумма скоростей теплоходов)

2) 90 : 45 = 2

Решение в виде выражения:90 : (20 + 25) = 2

Ответ: Теплоходы встретятся через 2 часа.

Задача 3

От двух станций, расстояние между которыми 564 км., одновременно навстречу друг другу вышли два поезда. Скорость одного из них 63 км/час. Какова скорость второго, если поезда встретились через 4 часа?

Решение:Ответ: Задача 4Решение:Ответ: Задача 5Решение:

2) 440:110=4 (ч) время, через которое поезда встретятся.

Ответ: Поезда встретятся через 4 часа.

Решение задач

Решение практических заданий лучше всего помогает закрепить полученные знания. Существуют физические сборники, которые интересны тем, что включают в себя различные примеры, приближенные к реалистичным задачам. Прорешивая их самостоятельно, ученик не только лучше разберётся в теме, но и научится применять полученные знания на практике.

Вот два таких задания:

  1. Пусть имеется тело, движение которого описывается равенствами: x = Vx * t; y = y0 + Vy * t. Нужно определить траекторию его перемещения, учитывая, что Vx = 20 см/с, Vy = 2 м/с, Yo = 0,2 м. Для решения задачи нужно записать систему, определяемую исходными данными. Затем из первого равенства выразить время: t = x / Vx. Полученную формулу можно подставить в выражение нахождения координат абсциссы: y = y0 + (Vy * x) / Vx. Если теперь использовать исходные данные, то уравнение, описывающее траекторию, примет вид: y = 0.2 + 4x. Равенство напоминает собой формулу прямой: y = k * x + b. Исходя из этого можно утверждать, что траектория пути также будет представлять собой прямую линию. Действительно, в этом можно убедиться, если построить график движения. Для этого нужно взять несколько произвольных значений для икса, подставить их в формулу и найти вторую координату.
  2. Следующая задача довольно интересная. Нужно составить траекторию движения для тела, движущегося равномерно со скоростью два метра в секунду, при отклонении пути от оси икс на 60 градусов. За начало координат нужно принять точку (0, 0). Тогда начальный радиус-вектор тоже будет равен нулю: R = 0. Для успешного решения примера понадобится вспомнить скалярные уравнения для проекции при равномерном движении. Так как по условию вектор задан, то можно найти его проекцию на ось игрек: Vx = v * cos60 = 1; Vy = v * cos30 = √‎3. Отсюда: x = Vx * t = t; y = Vy * t = √‎3t.

Скорость при равнопеременном движении.

Одним из самых простых способов двигаться неравномерно, то можно представить перемещение тела равнопеременного типа. Такое перемещение может быть несколько типов движение: равноускоренное и равнозамедленное. Равноускоренное движение представляет собой движение, при котором скорость и ускорение равные, при том, что скорость увеличивается.

Равнозамедленное движение появляется, когда скорость и ускорение противоположны, скорость уменьшается.

При равнопеременном движении скорость в любой момент времени можно вычислить, если использовать выражение, где v>0 — начальная скорость движения точки; a> — постоянное ускорения точки.

Мгновенная скорость

Рассмотрим автомобиль, движущийся прямолинейно и неравномерно (например, из Москвы в Санкт-Петербург, как на рис. 50). Понятно, что значения средней скорости этого автомобиля за различные промежутки времени при неравномерном движении могут меняться. Можно ли в этом случае ответить на вопрос: чему равна скорость автомобиля в какой-то конкретный момент времени?

И существует ли вообще такая физическая величина? Ведь в определение средней скорости входит понятие определенного промежутка времени. А если этот промежуток времени будет равен

нулю, то и перемещение тела, очевидно, будет равно нулю.

Однако, наблюдая в движущимся автомобиле за спидометром, мы видим, что в каждый момент времени он показывает определенную величину, которая чаще всего изменяется со временем. Как же определить скорость тела в конкретный момент времени? Чтобы это сделать, рассмотрим очень маленький промежуток времени.

Под очень маленьким промежутком времени понимают такой промежуток, в течение которого движение тела практически неотличимо от равномерного прямолинейного движения. Это означает, что скорость тела в течение этого промежутка можно считать практически постоянной.

Из сказанного следует, что промежуток времени можно считать достаточно малым, если при его дальнейшем уменьшении полученные новые значения скорости практически не изменяются.

Понятно, что чем быстрее исследуемое тело изменяет свою скорость, тем меньше будет промежуток времени, в течение которого движение тела практически неотличимо от равномерного прямолинейного. И следовательно, тем меньший промежуток времени мы должны использовать для определения значения его скорости в конкретный момент времени.

Мгновенная скорость тела в данный момент времени t — это средняя скорость тела за достаточно малый промежуток времени Δt, начинающийся сразу после момента времени t.

При описании движения обычно говорят о скорости, имея при этом в виду мгновенную скорость в момент времени t. Поэтому мгновенную скорость обычно называют просто скорость. Если же речь идет, например, о средней скорости, то обязательно используют прилагательное «средняя», а для средней путевой скорости — прилагательные «средняя» и «путевая».

  • Итоги
  • Скорость (мгновенная скорость) тела в данный момент времени t — это средняя скорость тела за достаточно малый промежуток времени Δt, начинающийся сразу после момента времени t.
  • Вопросы

Какой промежуток времени при определении скорости можно считать достаточно малым? Что такое мгновенная скорость? Изменяется ли с течением времени мгновенная скорость тела, которое движется равномерно и прямолинейно? Какие физические модели используют при введении понятия мгновенной скорости?

Упражнение

Представьте себе, что вы выехали на автомобиле со своего места на стоянке, находящейся рядом с вашим домом, в 8 часов утра, а в 17 часов вечера вернули автомобиль на то же место. За день вы проехали путь s = 360 км. При этом в течение промежутка времени от 10 до 12 часов дня вы ехали по прямолинейной трассе строго на север с постоянной скоростью 60 км/ч.

Определите вашу скорость (модуль и направление) в моменты времени: а) t = 11 часов; б) t = 17 часов.

(No Ratings Yet) Мгновенная скорость

Как вычислить площади плоских фигур

Рис.1. Чтобы рассчитать перемещение по графику v(t) нужно уметь вычислять площади трех плоских фигур

Площадь прямоугольника

Площадь прямоугольника (рис. 1а) можно найти, перемножив две его перпендикулярные стороны:

\

Площадь трапеции

 Примечание: Трапеция – это четырехугольник, две его стороны параллельные, а две другие – не параллельные. Параллельные стороны называются основаниями трапеции.

Умножив полусумму оснований трапеции на ее высоту, получим площадь (рис. 1б) трапеции:

\

Площадь прямоугольного треугольника

Для прямоугольного треугольника (рис. 1в) площадь можно вычислить, перемножив два его катета и взяв половину от получившегося произведения:

\

Как рассчитать Instantaneoскорость нас из графика

Мгновенная скорость в любой конкретный момент времени определяется наклоном касательной, проведенной к графику положения-времени в этой точке.

  • Постройте график расстояние против времени.
  • Отметьте точку, в которой вам нужно найти мгновенную скорость, скажем A.
  • Определите точку на графике, соответствующую времени t1и t2.
  • Вычислить vсредний и проведем касательную в точке A.
  • На графике vинст в точке A находится по касательной, проведенной в этой точке
  • Чем длиннее тангенс, тем точнее будут значения.
  • На показанном изображении Синяя линияэто график зависимости положения от времени, А Красная линия — приблизительный наклон линии при t = 2.5 секунды.
  • Если мы продолжаем выбирать точки, которые все ближе и ближе друг к другу, линия начнет приближаться к наклону линии, касательной к одной точке.
  •  Если мы возьмем предел функции в этой точке, мы получим значение наклона касательной в этой точке.
  • Расстояние составляет примерно 140 м, а временной интервал — 4.3 с. Следовательно, приблизительный уклон составляет 32.55 м / с.

Общие сведения

Под движением тела понимают процесс его перемещения из одной точки пространства в другую. Произошедшее действие исследуют относительно другого объекта или выбранных начальных координат. При этом положение вовсе не обязательно может изменяться сразу ко всем окружающим его телам. Например, стоящий человек на Земле находится в состоянии покоя по отношению к планете, но движется относительно Солнца.

В физике принято любое изменение определять в системе пространственных координат. За оси принимают перпендикулярные линии x, y, z. Совокупность данных, используемых для изучения движения, называют системой отсчёта.

Существует несколько видов механического перемещения (во времени) физической точки:

  • равномерное и равноускоренно прямолинейное;
  • по дуге;
  • гармоническое колебание.

При движении тело проходит определённый путь. Описать его можно виртуальной линией, при этом она может быть как прямой, так и кривой. Именно она и называется траекторией движения. По сути, эта линия соединяет последовательно все положения точки в пространстве — от начальной до конечной. Длина отрезка является пройденным путём и считается векторной величиной.

Изменение радиус-вектора r (значения, задающего положение точки в пространстве относительно другого тела) описывает кинематический закон: r = r (t). В трёхмерных декартовых координатах его можно записать так: r = xe + ye + ze = (x, y, z). Вектор, построенный из начальной точки движущегося тела в расположение её в данный момент времени, то есть приращение радиус-вектора за определённый промежуток t, как раз и называют перемещением.

Время, за которое тело пройдёт по установленной траектории пути, называют скоростью. Фактически это быстрота изменения координаты. Физики, исследуя передвижение, изучают не только положение материальной точки в начальный и конечный момент времени, но и закон, по которому происходит перемещение. Другими словами, они определяют зависимость радиус-вектора от времени.

Неравномерное движение. Мгновенная скорость

  • План-конспект урока по теме «Неравномерное движение. Мгновенная скорость»
  • Дата:
  • Тема: Неравномерное движение. Мгновенная скорость
  • Цели:
  • Образовательная Обеспечить и сформировать осознанное усвоение знаний о неравномерном движении и мгновенной скорости;
  • Развивающая Продолжить развитие навыков самостоятельной деятельности, навыков работы в группах.
  • Воспитательная Формировать познавательный интерес к новым знаниям; воспитывать дисциплину поведения.
  • Тип урока: урок усвоения новых знаний
  • Оборудование и источники информации:

Исаченкова, Л. А. Физика : учеб. для 9 кл. учреждений общ.

сред. образования с рус. яз. обучения / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский ; под ред. А. А. Сокольского. Минск : Народная асвета, 2015

Структура урока:

  1. Организационный момент(5 мин)

  2. Актуализация опорных знаний(5мин)

  3. Изучение нового материала (14 мин)

  4. Физкультминутка (3 мин)

  5. Закрепление знаний (13мин)

  6. Итоги урока(5 мин)

Содержание урока

Здравствуйте, садитесь! (Проверка присутствующих). Сегодня на уроке мы должны разобраться с понятиями неравномерное движение и мгновенная скорость. А это значит, что Тема урокаНеравномерное движение. Мгновенная скорость

  1. Актуализация опорных знаний

Мы изучили равномерное прямолинейное движение. Однако реальные телаавтомобили, корабли, самолеты, детали механизмов и др. чаще всего движутся и не прямолинейно, и не равномерно. Каковы закономерности таких движений?

  1. Изучение нового материала

Рассмотрим пример. Автомобиль движется по участку дороги, изображенному на рисунке 68. На подъеме движение автомобиля замедляется, при спуске — ускоряется. Движение автомобиля и не прямолинейное, и не равномерное. Как описать такое движение?

  1. Прежде всего, для этого необходимо уточнить понятие скорость.
  2. Из 7-го класса вам известно, что такое средняя скорость. Она определяется как отношение пути к промежутку времени, за который этот путь пройден:
  3. (1)

Будем называть ее средней скоростью пути. Она показывает, какой путь в среднем проходило тело за единицу времени.

Кроме средней скорости пути, необходимо ввести и среднюю скорость перемещения:

(2)

Каков смысл средней скорости перемещения? Она показывает, какое перемещение в среднем совершало тело за единицу времени.

Средняя скорость пути и средняя скорость перемещения — важные характеристики любого движения. Первая из них — величина скалярная, вторая — векторная. Так как Δr

Шаги

Метод 1 из 2:

Часть 1: Определение средней скорости изменения функции

  1. 1

    Функция. Это соответствие между переменными величинами, в котором каждому значению некоторой независимой переменной «x» соответствует определенное значение зависимой переменной «у».

  2. 2

    Переменная. Это величина, в процессе своего изменения принимающая различные значения. Переменные, как правило, обозначаются через «х» и «у».

  3. 3

    Угловой коэффициент. Он равен тангенсу угла между положительным направлением оси абсцисс и данной прямой линией. Угловой коэффициент характеризует скорость изменения линейной функции.

  4. 4

    Секущая. Это прямая, пересекающая две или более точки, лежащих на кривой. При вычислении средней скорости изменения функции вы находите угловой коэффициент секущей между двумя заданными точками.

  5. 5

    Основная формула для вычисления средней скорости изменения функции показана на рисунке.

Метод 2 из 2:

Часть 2: Вычисление средней скорости изменения функции

  1. 1

    Найдите f(x + h).

    Вычислите f(x + h), используя следующее выражение: f(x + h) = (х + h)^2 = x^2 + 2xh + h^2.

    В исходной функции f(x) замените «х» на «x + h», где h – приращение аргумента (то есть изменение независимой переменной «х»).Например, дана функция f(х) = x^2. Вычислите среднюю скорость изменения функции между в интервале (2,5) (то есть х1 = 2 и х2 = 5).

  2. 2

    Вычислите среднюю скорость изменения, воспользовавшись основной формулой и подставив в нее исходную функцию f(x) и преобразованную функцию f(x+h).

    В приведенном выше примере вычисления показаны на рисунке.
    WH.shared.addScrollLoadItem(‘cc51182fbff452ca00cb398923769107’)

    {«smallUrl»:»https:\/\/www.wikihow.com\/images_en\/thumb\/e\/e7\/Screen-Shot-2014-03-11-at-5.00.07-PM.png\/460px-Screen-Shot-2014-03-11-at-5.00.07-PM.png»,»bigUrl»:»https:\/\/www.wikihow.com\/images\/thumb\/e\/e7\/Screen-Shot-2014-03-11-at-5.00.07-PM.png\/728px-Screen-Shot-2014-03-11-at-5.00.07-PM.png»,»smallWidth»:460,»smallHeight»:111,»bigWidth»:728,»bigHeight»:176,»licensing»:»

    «}

  3. 3

    Найдите h.

    В приведенном выше примере: h = x2 — x1 = 5 — 2 = 3.

    Для этого вычтите начальное значение переменной «х» из ее конечного значения. Другими словами, если интервал задается в виде (x1, x2), то h = x2 — x1.

  4. 4

    Вычислите среднюю скорость изменения.

    В приведенном выше примере: А(х) = 2х + h = 2 × 2 + 3 = 7

    Поставьте найденное значение h в выведенную выше формулу (вместо «х» подставьте значение x1).

  5. 5

    Запишите ответ. В нашем примере средняя скорость изменения функции равна 7.

Средняя скорость.

В случае если перемещение тела происходит равномерно, то одной из характеристик может быть средняя скорость. Такое понятие поможет установить значение скорости на конкретных частях пройденного пути. Многие ученые не считают данную характеристику точной, она кажется приближенной к действительности. Это связано с тем, что средняя скорость действительно не может отразить точных параметром движения. Так как средняя скорость является равномерной, она не может применяться для отражения неравномерного перемещения. Однако скорость не может изменяться в виде скачков, даже незначительные замедления могут повлиять на всю картину.

Если представить график, который отразит средние скорости, имеющимися у тела, осуществляющего перемещение, то он будет выглядеть как подъемы и падения кривой, это стандартная ломаная линия. Ее звенья будут иметь различный наклон.

Если взять во внимание определенную материальную точку, которая будет перемешаться параллельно прямой, не совпадающей с координатными осями, то ее нахождение можно определить. В этом поможет формула, в которой есть понятие радиус-вектора и время

В момент времени t2 положение материальной точки в пространстве определяет вектор r>2. Отсюда легко определить, по какому вектору перемещается та или иная материальная точка.

Определение 1.

Средняя скорость определяется формулой.

Из нее можно заметить, что вектор делится на скалярную величину. Результатом является тот факт, что его вектор совпадает с вектором, который определяет перемещение. Данные величины имеют идентичные направления.

Формула мгновенной угловой скорости

Освободи Себя мгновенная угловая скорость скорость, с которой частица движется по круговой траектории в определенный момент времени.

Освободи Себя мгновенная угловая скорость вращающегося объекта определяется выражением

 = производная углового положенияθ по времени, найденное предельным переходом Δ t → 0 в средняя угловая скорость.

Освободи Себя направление угловой скорости на круговой траектории — вдоль оси вращения и указывает от вас на вращающееся тело по часовой стрелке и к вам для тела, вращающегося против часовой стрелки. В математике это обычно описывается правило правой руки.

Переход от средней скорости к мгновенной скорости.

Выражения, которые получились, отражают среднюю скорость для того или иного отрезка времени. Если поделить его на короткие фазы, то получится, что материальная точка будет иметь разные показатели скорости. Такое явление можно объяснить разными способами перемещения точки. Это может быть неравномерное или равномерное движение. В случае неравномерного перемещения, скорости будут разными.

Если произвести уменьшение отрезка времени, то разница будет заметна и на отрезках внутри промежутка. Так же произойдут изменения в средних скоростях данных показателей времени на всем отрезку.

Если устремить отрезок времени к нулю (?t>0), средняя скорость при этом устремится к предельному значению, которое называют мгновенной скоростью.

Определение 2.

Для расчета мгновенной скорости, надо обратиться к формуле, которая была разработана коллективом ученых.

Если тело перемещается равномерно, то мгновенная скорость его движения в определенный момент времени совпадает со скоростью этого движения. Установлено, что мгновенная скорость равномерного движения является постоянной.

Как рассчитать мгновенную скорость для тела, которое перемещается неравномерно. Этот параметр является переменным. Он может принимать различные значения в зависимости от времени. Тогда скорость считаться меняющейся на каждом из отрезков времени.

Мгновенную скорость в каждый момент времени можно определить как тангенс угла наклона касательной к кривой – траектории движения в рассматриваемой точке.

Движение тела под углом

Свободное падение является частным случаем равноускоренного, то есть на перемещаемый объект действует только сила притяжения. Если физическая точка перемещается, то кривая, которая описывается её радиус-вектором, обозначает пройденный путь. Эту траекторию можно описать некоторой математической функцией.

Итак, вектор скорости точки определяется как производная по времени: V = dr / dt = r. Ускорение же можно найти, продифференцировав скорость: a = dV / dt = d 2 r / dt. Если обозначить производную времени точкой, то формулу можно переписать так: a = V = r.

Для того чтобы вывести формулу, нужно воспользоваться основными выражениями, определяющими проекции:

  • ускорения: ax = 0, ay = — g, az = 0;
  • радиус-вектора: rx (t) = V0 * cosat, ry (t) = v * sin (at — (g * t2)/2)), rz (t) = 0;
  • скорости: vx (t) = V0 * cosa, vy (t) = V0 * sin (a — gt), vz (t) = 0.

Чтобы запись зависимости вертикальной оси от горизонтальной была как можно более компактной, соответствующие координаты rx и ry можно обозначить через икс и игрек. Из уравнения, связывающего координатную ось X и время, можно определить t как функцию ординаты. Линейное выражение будет иметь вид: t = x / (Vo * cosa).

Если полученную формулу для времени подставить в уравнение для игрек координаты, то вместо временного параметра появится икс. То есть можно будет вывести зависимость абсциссы от ординаты: y = V 0 * sinat — (g * t2) / 2 = (tga) * x — (g / 2 * V0 * cos2a) * x2. Значение t нужно подставить в каждое слагаемое, но при этом учесть, что отношение синуса к косинусу называют тангенсом. Альфа в формуле — это угол между направлением начальной скорости и горизонтальным направлением (угол броска). После исключения времени из этих уравнений получим уравнение траектории.

В итоге останется два слагаемых. Первое будет линейно по иксу, а второе квадратично. Таким образом, зависимость игрека от икса в уравнении траектории — это парабола (справа стоит квадратичная функция). Она проходит через начало координат. Если верно равенство x = 0, то игрек тоже будет равняться нулю.

Горизонтальное перемещение

Пусть имеется тело, брошенное горизонтально поверхности. Высота падения равняется h, а начальная скорость V0. Здесь систему отсчёта удобно связать с Землёй. Объект будет передвигаться под действием силы тяжести. Остальными силами, например, сопротивлением воздуха, можно пренебречь. Тело перемещается в плоскости, содержащей вектора ускорения и свободного падения (g).

Таким образом, система начальных условий будет выглядеть так: x (t = 0) = 0; y (t = 0) = 0; v0x = v0; voy = 0. Вектор ускорения постоянный, поэтому a = g. Если тело представить как совокупность материальных точек, движущихся по одинаковому пути, то путь можно определить как сумму перемещений по прямым. Уравнение скорости примет вид: v (t) = v0 + gt. Об изменении положения можно сказать, что оно выполняется с постоянной скоростью и ускорением в горизонтальной плоскости, являясь равномерным. Значит, проекцию на оси ординаты и абсциссы можно записать как vx = v0; vy = -gt.

Скорость перемещения рассчитывают по формуле: V = √‎(V 2 x + V2 y). После подстановки полученных ранее выражений равенство примет вид: V = √‎(V 2 0 + g 2 t 2). Отсюда следует, что уравнение для вектора движения материальной точки будет: s (t) = s0 + V0t + (g t 2) / 2, где: s0 — смещение тела, соответствующее начальному моменту времени.

Можно сделать вывод, что уравнение траектории не записывается через время, поэтому частица будет и перемещаться обратно по той же самой траектории. Временные отрезки между точками пути будут одинаковы как при прямом, так и при обратном движении.

I. Механика

Неравномерным считается движение с изменяющейся скоростью. Скорость может изменяться по направлению. Можно заключить, что любое движение НЕ по прямой траектории является неравномерным. Например, движение тела по окружности, движение тела брошенного вдаль и др.

Скорость может изменяться по численному значению. Такое движение тоже будет неравномерным. Особенный случай такого движения — равноускоренное движение.

Иногда встречается неравномерное движение, которое состоит из чередования различного вида движений, например, сначала автобус разгоняется (движение равноускоренное), потом какое-то время движется равномерно, а потом останавливается.

Мгновенная скорость

Охарактеризовать неравномерное движение можно лишь скоростью. Но скорость всегда изменяется! Поэтому можно говорить лишь о скорости в данное мгновение времени. Путешествуя на машине спидометр ежесекундно демонстрирует вам мгновенную скорость движения. Но время при этом надо уменьшить не до секунды, а рассматривать гораздо меньший промежуток времени!

Средняя скорость

Что же такое средняя скорость? Неверно думать, что необходимо сложить все мгновенные скорости и разделить на их количество.

Это самое распространенное заблуждение о средней скорости! Средняя скорость — это весь путь разделить на затраченное время. И никакими другими способами она не определяется.

Если рассмотреть движение автомобиля, можно оценить его средние скорости на первой половине пути, на второй, на всем пути. Средние скорости могут быть одинаковыми, а могут быть различными на этих участках.

У средних величин рисуют сверху горизонтальную черту.

Средняя скорость перемещения. Средняя путевая скорость

Если движение тела не является прямолинейным, то пройденный телом путь будет больше, чем его перемещение. В этом случае средняя скорость перемещения отличается от средней путевой скорости. Путевая скорость — скаляр.

Главное запомнить

  • 1) Определение и виды неравномерного движения; 2) Различие средней и мгновенной скоростей;
  • 3) Правило нахождения средней скорости движения

Формула для определения средней скорости*

Часто требуется решить задачу, где весь путь разбит на равные участки, даны средние скорости на каждом участке, требуется найти среднюю скорость движения на всем пути.

Неверное решение будет, если сложить средние скорости и разделить на их количество. Ниже выводится формула, которую можно использовать при решении подобных задач.

Определение мгновенной скорости графически*

Мгновенную скорость можно определить с помощью графика движения. Мгновенная скорость тела в любой точке на графике определяется наклоном касательной к кривой в соответствующей точке. Мгновенная скорость — тангенс угла наклона касательной к графику функции.

Упражнения

Во время езды на автомобиле через каждую минуту снимались показания спидометра. Можно ли по этим данным определить среднюю скорость движения автомобиля?

Нельзя, так как в общем случае величина средней скорости не равна среднему арифметическому значению величин мгновенных скоростей. А путь и время не даны.

Какую скорость переменного движения показывает спидометр автомобиля?

Близкую к мгновенной. Близкую, так как промежуток времени должен быть бесконечно мал, а при снятии показаний со спидометра так о времени судить нельзя.

В каком случае мгновенная и средняя скорости равны между собой? Почему?

При равномерном движении. Потому что скорость не изменяется.

Скорость движения молотка при ударе равна 8м/с. Какая это скорость: средняя или мгновенная?

Поезд прошел путь между городами со скоростью 50км/ч. Какая это скорость: средняя или мгновенная?

*Два шарика начали одновременно и с одинаковой скоростью двигаться по поверхностям, имеющим форму, изображенную на рисунке. Как будут отличаться скорости и время движения шариков к моменту их прибытия в точку В? Силу трения не учитывать.

Задача решается графическим способом. Скорости будут одинаковы. Время движения второго шарика меньше. Примерные графики движения шариков приведены на рисунке. Так как пути. пройденные шариками, равны, то, как видно из графика (на графике пути численно равны площадям заштрихованных фигур), время второго шарика меньше времени первого.

Движение в противоположных направлениях

Если два объекта движутся в противоположных направлениях, то они удаляются. Чтобы найти скорость удаления, надо сложить скорости этих объектов:

Скорость удаления больше скорости любого из них.

Задача 1

Из поселка вышли одновременно в противоположных направлениях два пешехода. Средняя скорость одного пешехода – 5 км/ч, другого – 4 км/ч. Через сколько часов расстояние между ними будет 27 км ?

Решение:

Чтобы найти время движения пешеходов, нужно знать расстояние и скорость пешеходов. Мы знаем, что за каждый час один пешеход удаляется от поселка на 5 км, а другой пешеход удаляется от поселка на 4 км. Можем найти их скорость удаления.

1. 

Мы знаем скорость удаления и знаем все расстояние – 27 км. Можем найти время, через которое пешеходы удалятся друг от друга на 27 км, для этого нужно расстояние разделить на скорость.

2. 

Ответ: Через три часа расстояние между переходами будет 27 км.

Задача 2

Из поселка вышли одновременно в противоположных направлениях два пешехода. Через 3 часа расстояние между ними было 27 км. Первый пешеход шел со скоростью 5 км/ч. С какой скоростью шел второй пешеход ?

Решение:

Чтобы узнать скорость второго пешехода, надо знать расстояние, которое он прошел, и его время в пути. Чтобы узнать, какое расстояние прошел второй пешеход, надо знать, какое расстояние прошел первый пешеход и общее расстояние. Общее расстояние мы знаем. Чтобы найти расстояние, которое прошел первый пешеход, надо знать его скорость и его время в пути. Средняя скорость движения первого пешехода – 5 км/ч, его время в пути – 3 часа. Если среднюю скорость умножить на время в пути, получим расстояние, которое прошел пешеход:

1. 

Мы знаем общее расстояние и знаем расстояние, которое прошел первый пешеход. Можем теперь узнать, какое расстояние прошел второй пешеход.

2. 

Теперь мы знаем расстояние, которое прошел второй пешеход, и время, проведенное им в пути. Можем найти его скорость.

3. 

Ответ: Скорость второго пешехода – 4 км/ч.

Задача 3

Товарный и пассажирский поезда движутся в противоположных направлениях. Скорость товарного 45 км/ч, скорость пассажирского — 70 км/ч. Сейчас между ними 20 км. Какое расстояние будет между ними через 2 часа ?

Решение:

1) 70+45=115 (км/ч) скорость удаления поездов

2) 115∙2=230 (км) пройдут поезда вместе за 2 часа

3) 230+20=250 (км) такое расстояние между поездами будет через 2 часа.

Ответ: Через 2 часа расстояние между поездами составит 250 км.

Задача 4

Из одного пункта одновременно в противоположных направлениях выехали два мотоциклиста. Скорость одного из них — 60 км/ч, скорость другого — 40 км/ч. Через какое время расстояние между ними станет равным 300 км?

Решение:

1) 60+40=100 (км/ч) скорость удаления мотоциклистов

2) 300:100=3 (ч) через такое время расстояние между ними будет 300 км.

Задачи на движение в одном направлении

Задачи на скорость сближения

Задача 1Решение

40 · 4 = 160 (км)

Второй автомобиль движется быстрее первого, значит каждый час расстояние между автомобилями будет сокращаться на разность их скоростей:

60 — 40 = 20 (км/ч) – это скорость сближения автомобилей

Разделив расстояние между автомобилями на скорость их сближения, можно узнать, через сколько часов они встретятся:

160 : 20 = 8 (ч)

Решение задачи по действиям можно записать так:

1) 40 · 4 = 160 (км) – расстояние между автомобилями

2) 60 — 40 = 20 (км/ч) – скорость сближения автомобилей

3) 160 : 20 = 8 (ч)

Ответ: Второй автомобиль догонит первый через 8 часов.

Задача 2

Из двух посёлков между которыми 5 км, одновременно в одном направлении вышли два пешехода. Скорость пешехода, идущего впереди, 4 км/ч, а скорость пешехода, идущего позади 5 км/ч. Через сколько часов после выхода второй пешеход догонит первого?

Решение:

Так как второй пешеход движется быстрее первого, то каждый час расстояние между ними будет сокращаться. Значит можно определить скорость сближения пешеходов:

5 — 4 = 1 (км/ч)

Оба пешехода вышли одновременно, значит расстояние между ними равно расстоянию между посёлками (5 км). Разделив расстояние между пешеходами на скорость их сближения, узнаем через сколько второй пешеход догонит первого:

5 : 1 = 5 (ч)

Решение задачи по действиям можно записать так:

1) 5 — 4 = 1 (км/ч) – это скорость сближения пешеходов

2) 5 : 1 = 5 (ч)

Ответ: Через 5 часов второй пешеход догонит первого.

Задача 3

Решение:

2) 3∙4=12 (км) такое расстояние будет между велосипедистами через 4 часа.

Ответ: Задача 4
Решение:

2) 10-6=4 (км/ч) скорость пешехода.

Ответ: Скорость пешехода составляет 4 км/ч.

Задачи на скорость удаления

Задача 1

  1. Чему равна скорость удаления между автомобилями?
  2. Какое расстояние будет между автомобилями через 3 часа?
  3. Через сколько часов расстояние между ними будет 200 км?

Решение:

80 — 40 = 40 (км/ч)

Каждый час автомобили отдаляются друг от друга на 40 км. Теперь можно узнать сколько километров будет между ними через 3 часа, для этого скорость удаления умножим на 3:

40 · 3 = 120 (км)

Чтобы узнать через сколько часов расстояние между автомобилями станет 200 км, надо расстояние разделить на скорость удаления:

200 : 40 = 5 (ч)

Ответ:

  1. Скорость удаления между автомобилями равна 40 км/ч.
  2. Через 3 часа между автомобилями будет 120 км.
  3. Через 5 часов между автомобилями будет расстояние в 200 км.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер по всему
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector